Answer:
it is the last one on the bottom
Answer:
solution set are


Step-by-step explanation:
we are given system of equation as


For finding solution set , we can draw graph of both equations
and then we can find intersection point
the intersection point will be our solution set
we get graph as
So, solution set are


11. Factoring and solving equations
- A. Factor-
1. Factor 3x2 + 6x if possible.
Look for monomial (single-term) factors first; 3 is a factor of both 3x2
and 6x and so is x . Factor them out to get
3x2 + 6x = 3(x2 + 2x1 = 3x(x+ 2) .
2. Factor x2 + x - 6 if possible.
Here we have no common monomial factors. To get the x2 term
we'll have the form (x +-)(x +-) . Since
(x+A)(x+B) = x2 + (A+B)x + AB ,
we need two numbers A and B whose sum is 1 and whose product is
-6 . Integer possibilities that will give a product of -6 are
-6 and 1, 6 and -1, -3 and 2, 3 and -2.
The only pair whose sum is 1 is (3 and -2) , so the factorization is
x2 + x - 6 = (x+3)(x-2) .
3. Factor 4x2 - 3x - 10 if possible.
Because of the 4x2 term the factored form wli be either
(4x+A)(x +B) or (2x+A)(2x+B) . Because of the -10 the integer possibilities
for the pair A, B are
10 and -1 , -10 and 1 , 5 and -2 . -5 and 2 , plus each of
these in reversed order.
Check the various possibilities by trial and error. It may help to write
out the expansions
(4x + A)(x+ B) = 4x2 + (4B+A)x + A8
1 trying to get -3 here
(2x+A)(2x+B) = 4x2 + (2B+ 2A)x + AB
Trial and error gives the factorization 4x2 - 3x - 10 - (4x+5)(x- 2) .
4. Difference of two squares. Since (A + B)(A - B) = - B~ , any
expression of the form A' - B' can be factored. Note that A and B
might be anything at all.
Examples: 9x2 - 16 = (3x1' - 4' = (3x +4)(3x - 4)
x2 - 29 = x2 - (my)* = (x+ JTy)(x- my)