Answer:
ºC
Explanation:
First, let's write the energy balance over the duct:

It says that the energy that goes out from the duct (which is in enthalpy of the mass flow) must be equals to the energy that enters in the same way plus the heat that is added to the air. Decompose the enthalpies to the mass flow and specific enthalpies:

The enthalpy change can be calculated as Cp multiplied by the difference of temperature because it is supposed that the pressure drop is not significant.

So, let's isolate
:

The Cp of the air at 27ºC is 1007
(Taken from Keenan, Chao, Keyes, “Gas Tables”, Wiley, 1985.); and the only two unknown are
and Q.
Q can be found knowing that the heat flux is 600W/m2, which is a rate of heat to transfer area; so if we know the transfer area, we could know the heat added.
The heat transfer area is the inner surface area of the duct, which can be found as the perimeter of the cross section multiplied by the length of the duct:
Perimeter:

Surface area:

Then, the heat Q is:

Finally, find the exit temperature:

=27.0000077 ºC
The temperature change so little because:
- The mass flow is so big compared to the heat flux.
- The transfer area is so little, a bigger length would be required.
Answer:
v = √ 2e (V₂-V₁) / m
Explanation:
For this exercise we can use the conservation of the energy of the electron
At the highest point. Resting on the top plate
Em₀ = U = -e V₁
At the lowest point. Just before touching the bottom plate
Emf = K + U = ½ m v² - e V₂
Energy is conserved
Em₀ = Emf
-eV₁ = ½ m v² - e V₂
v = √ 2e (V₂-V₁) / m
Where e is the charge of the electron, V₂-V₁ is the potential difference applied to the capacitor and m is the mass of the electron
A procedure is all the steps used to do an experiment in order.
<span>the experiment is when you test your hypothesis and is designed to answer your question. </span>
<span>the procedure is all the steps of the experiment.</span>
Answer:
1e , 2j , 3c , 4d , 5k , 6a , 7i , 8b , 9m , 10h ,11g , 12f , 13l .
Answer:
6KW
Explanation:
The computation is shown below:
We know that
Work done= m ×g× h
Here
W= 300×10×10
= 30000 J
= 30 KJ
And
Power= Work done ÷time taken
P = 30000 ÷ 5
= 6000W
= 6KW
The above represent the answer