To answer this item, it is assumed that the gas in the cylinder is ideal such that it follows the equation,
PV = nRT
when V is to be calculated,
V = nRT/P
V = (4)(0.0821 L.atm/molK)(300 K) / (400 kPa/101.325 kPa/atm)
V = 24.95 L
Thus, the volume of gas in the cylinder is 24.95 L.
Answer:
3.90 degrees
Explanation:
Let g= 9.81 m/s2. The gravity of the 30kg grocery cart is
W = mg = 30*9.81 = 294.3 N
This gravity is split into 2 components on the ramp, 1 parallel and the other perpendicular to the ramp.
We can calculate the parallel one since it's the one that affects the force required to push up
F = WsinΘ
Since customer would not complain if the force is no more than 20N
F = 20
So the ramp cannot be larger than 3.9 degrees
Answer:
B. When the racket hits the tennis ball with a force, the tennis ball applies an equal but opposite force to the racket.
Explanation:
According to the Newton's third law of motion every action has equal and opposite reaction. So, when the force is applied by the racket on the ball then the ball also applies an equal intensity of force in the opposite direction on the racket. It is just that the the force on the racket is absorbed by the player holding it.
Answer:
7.00 m
Explanation:
Given:
v₀ = 2.00 m/s
v = 5.00 m/s
a = 1.50 m/s²
Find: Δx
v² = v₀² + 2aΔx
(5.00 m/s)² = (2.00 m/s)² + 2(1.50 m/s²)Δx
Δx = 7.00 m