Answer:
Infrared radiation → A) used to detect the location of objects
Microwaves → D) Used in radar and to heat food
Ultraviolet light → C)Given off by very hot objects, such as the sun Heat from warm objects
Visible light → B) All the radiation humans can see, ranging from red to violet
Explanation:
Microwaves have magnetic waves with very long lengths, greater than that of infrared light. These waves are produced through vibrations that produce heat, as the microwave is turned on, which allows the food to be heated. These waves are also used to provide communication on some types of devices.
Infrared radiation is a type of non-ionizing radiation that has a low frequency and therefore cannot be visualized, since it is not within a visible electromagnetic spectrum, having a frequency lower than red. It can be used to detect the licalization of objects and does not pose a health risk.
Ultraviolet radiation is extremely harmful to our body. It is characterized by radiation with very small wavelengths, less than 400nm. This type of radiation can be released by the sun and ultraviolet lamps.
Visible light refers to the simplest form of electromagnetic wave and covers all the radiation that our eyes can see, allowing different colors to be seen in the objects we observe according to the reorganization of atoms and molecules.
Answer:
8.4) 27.1 cm³
8.5) 0.217 mol/dm³
Explanation:
Please see attached picture for full solution.
8.4) Since the results from titrations 3-5 are within 0.10cm³ from each other, these 3 results are concordant.
8.5) Find mol of sulfuric acid to find mol of NaOH using mole ratio. Equation has already been balanced for you, so mole ratio of NaOH to H2S04 is 2:1. To find concentration of NaOH, divide the number of moles by the volume in dm³ since the units for concentration is mol/dm³, which you can think of as the number of moles of NaOH in a dm³ of solution.
1 dm³ = 1000cm³
Thus, 1cm³= 1/1000 dm³
When 0.34 of HNO₃ is titrated to equivalence using 0.14 l of 0.1 m NaOH then the concentration of HNO₃ is 0.041 M
The reaction of neutralization of HNO₃ with NaOH is
HNO₃ + NaOH → H₂O + NaNo₃
When 1 mole of HNO₃ react with 1 mole of NaOH, based on chemical rection the moles of NaOH at equivalence point are equal to moles of HNO₃ present in solution: -
With the mole and volumes, we can find molarity as follows:
Moles of NaOH = moles HNO₃
⁼ 0.14 L X (0.1 mol NaOH/L) = 0.014 mole NaOH
=0.014 mol HNO₃
Molarity: -

= 0.041 M
Thus, from above solution we concluded that the concentration of HNO₃ solution is 0.041 M.
Learn more about molarity: brainly.com/question/8732513
#SPJ4
274 mL H3 O+ and fully neutralized
It will take one teaspoon of Mg(OH)2 to completely neutralize 2.00×10^2mL of H3O+.
<h3>What is the purpose of milk of magnesia?</h3>
- For a brief period of time, this medicine is used to relieve sporadic constipation.
- It is an osmotic laxative, which means that it works by drawing water into the intestines, which aids in causing bowel movement.
<h3>What dosage of milk of magnesia is recommended for constipation?</h3>
- Take Milk of Magnesia once day, preferably before bed, in divided doses, or as prescribed by a physician.
- suggested dosage: 30 mL to 60 mL for adults and kids 12 years of age and older. 15 mL to 30 mL for children aged 6 to 11 years.
learn more about milk of magnesia here
brainly.com/question/15178597
#SPJ4
the question you are looking for is
People often take milk of magnesia to reduce the discomfort associated with acid stomach or heartburn. The recommended dose is 1 teaspoon, which contains 4.00x 10^{2} mg of Mg(OH)_2. What volume of an HCl solution with a pH of 1.3 can be neutralized by one dose of milk of magnesia? If the stomach contains 2.00x10^{2}mL of pH 1.3 solution, is all the acid neutralized? If not, what fraction is neutralized?