Answer:
yes. they can block the wind which causes top soil erosion and they also soak up some the water in the soil
Consider this balanced chemical equation:
2 H2 + O2 → 2 H2O
We interpret this as “two molecules of hydrogen react with one molecule of oxygen to make two molecules of water.” The chemical equation is balanced as long as the coefficients are in the ratio 2:1:2. For instance, this chemical equation is also balanced:
100 H2 + 50 O2 → 100 H2O
This equation is not conventional—because convention says that we use the lowest ratio of coefficients—but it is balanced. So is this chemical equation:
5,000 H2 + 2,500 O2 → 5,000 H2O
Again, this is not conventional, but it is still balanced. Suppose we use a much larger number:
12.044 × 1023 H2 + 6.022 × 1023 O2 → 12.044 × 1023 H2O
These coefficients are also in the ratio of 2:1:2. But these numbers are related to the number of things in a mole: the first and last numbers are two times Avogadro’s number, while the second number is Avogadro’s number. That means that the first and last numbers represent 2 mol, while the middle number is just 1 mol. Well, why not just use the number of moles in balancing the chemical equation?
2 H2 + O2 → 2 H2O
Answer:
please explain further and i maybe can help you
Explanation:
Complete Question
You determine that it takes 26.0 mL of base to neutralize a sample of your unknown acid solution. The pH of the solution was 7.82 when exactly 13 mL of base had been added, you notice that the concentration of the unknown acid was 0.1 M. What is the pKa of your unknown acid?
Answer:
The pK_a value is
Explanation:
From the question we are told
The volume of base is 
The pH of solution is 
The concentration of the acid is 
From the pH we can see that the titration is between a strong base and a weak acid
Let assume that the the volume of acid is 
Generally the concentration of base

Substituting value


When 13mL of the base is added a buffer is formed
The chemical equation of the reaction is

Now before the reaction the number of mole of base is
![No \ of \ moles[N_B] = C_B * V_B](https://tex.z-dn.net/?f=No%20%5C%20of%20%5C%20moles%5BN_B%5D%20%20%3D%20%20C_B%20%2A%20V_B)
Substituting value

Now before the reaction the number of mole of acid is

Substituting value


Now after the reaction the number of moles of base is zero i.e has been used up
this mathematically represented as

The number of moles of acid is


The pH of this reaction can be mathematically represented as
![pH = pK_a + log \frac{[base]}{[acid]}](https://tex.z-dn.net/?f=pH%20%20%3D%20pK_a%20%2B%20log%20%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
Substituting values

Answer: do that yourself dip
Explanation: