Explanation:
Given -
- An organic compound gives H₂ gas with Na
- On treatment with alkaline iodine it gives yellow ppt.
- On oxidation with CrO₃/H⁺ forms an aldehyde (C₂H₄O)
To Find -
- Name the compound and write the reaction involved
Now,
Let A be the organic compound.
Then,
- A + Na → + H₂↑
- A + I₂ → CHI₃ (yellow ppt.)
- A + CrO₃ + H⁺ → C₂H₄O
Now,
Here we see that compound A reacts with chromic oxide (CrO₃) in the presence of acidic medium gives aldehyde.
- Functional group of aldehyde = —CHO
And It forms only 2 Carbon aldehyde it means, It is Ethanal (CH₃CHO).
Compound A reacts with chromic oxide (CrO₃) in the presence of acidic medium gives ethanal.
It means,
We know that 1° alcohol on oxidation gives aldehyde.
Here it gives 2 Carbon aldehyde.
It means,
Here 2 Carbon and 1° alcohol is used.
Now,
Its cleared that Compound A is Ethanol.
Reaction Involved -
- CH₃CH₂OH + Na → CH₃CH₂O⁻Na⁺ + H₂↑
- CH₃CH₂OH + I₂ + OH⁻ → CHI₃↓ + HCOO⁻ + HI + H₂O
- CH₃CH₂OH + CrO₃ + H⁺ → CH₃CHO
Answer:
108 kPa
Step-by-step explanation:
To solve this problem, we can use the <em>Combined Gas Laws</em>:
p₁V₁/T₁ = p₂V₂/T₂ Multiply each side by T₁
p₁V₁ = p₂V₂ × T₁/T₂ Divide each side by V₁
p₁ = p₂ × V₂/V₁ × T₁/T₂
Data:
p₁ = ?; V₁ = 34.3 L; T₁ = 31.5 °C
p₂ = 122.2 kPa; V₂ = 29.2 L; T₂ = 21.0 °C
Calculations:
(a) Convert temperatures to <em>kelvins
</em>
T₁ = (31.5 + 273.15) K = 304.65 K
T₂ = (21.0 + 273.15) K = 294.15 K
(b) Calculate the <em>pressure
</em>
p₁ = 122.2 kPa × (29.2/34.3) × (304.65/294.15)
= 122.2 kPa × 0.8542 × 1.0357
= 108 kPa
The answer to this would be promptly A.
Answer:
mass = 1.8x10⁻³ kg; number of moles = 4.1x10⁻⁵ kmol; specific volume = 0.55 m³/kg; molar specific volume = 24.4 m³/kmol
Explanation:
By the Avogadro's number, 1 mol of the matter has 6.02x10²³ molecules, thus, the number of moles (n) is the number of molecules presented divided by Avogadro's number:
n = 2.5x10²²/6.02x10²³
n = 0.041 mol
n = 4.1x10⁻⁵ kmol
The molar mass of CO₂ is 44 g/mol (12 g/mol of C + 2*16g/mol of O), and the mass is the number of moles multiplied by the molar mass:
m = 0.041 mol * 44 g/mol
m = 1.804 g
m = 1.8x10⁻³ kg
The specific volume (v) is the volume (1L = 0.001 m³) divided by the mass, and it represents how much volume is presented in each part of the mass:
v = 0.001/1.8x10⁻³
v = 0.55 m³/kg
The molar specific volume (nv) is the volume divided by the number of moles, and it represents how much volume is presented in each part of the mol:
nv = 0.001/4.1x10⁻⁵
nv = 24.4 m³/kmol
Im pretty sure that the current will increase so the answer is A . Hope that helps