Answer:
[NaCl[ = 0.535M
Explanation:
We determine the moles of solute:
125 g . 1 mol/ 58.45 g = 2.14 moles
Molarity (mol/L) → 2.14 mol / 4L → 0.535M
Molarity is a sort of concentration that indicates the moles of solute in 1L of solution
Answer:
31.31× 10²³ number of Cl⁻ are present in 2.6 moles of CaCl₂ .
Explanation:
Given data:
Number of moles of CaCl₂ = 2.6 mol
Number of Cl₂ ions = ?
Solution:
CaCl₂ → Ca²⁺ + 2Cl⁻
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
In one mole of CaCl₂ there are two moles of chloride ions present.
In 2.6 mol:
2.6×2 = 5.2 moles
1 mole Cl⁻ = 6.022 × 10²³ number of Cl⁻ ions
5.2 mol × 6.022 × 10²³ number of Cl⁻ / 1mol
31.31× 10²³ number of Cl⁻
Answer:

Explanation:
Hello there!
In this case, since these problems about gas mixtures are based off Dalton's law in terms of mole fraction, partial pressure and total pressure, we can write the following for hydrogen, we are given its partial pressure:

And can be solved for the total pressure as follows:

However, we first calculate the mole fraction of hydrogen by subtracting that of nitrogen to 1 due to:

Then, we can plug in to obtain the total pressure:

Regards!
Answer:
Explanation:
Examples of pure substances include tin, sulfur, diamond, water, pure sugar (sucrose), table salt (sodium chloride) and baking soda (sodium bicarbonate). Crystals, in general, are pure substances. Tin, sulfur, and diamond are examples of pure substances that are chemical elements.