Answer:
a.(x)=7
b.(x)=14
Step-by-step explanation:
plz mark me as brainliest
Answer:

or in slope y-intercept form :

Step-by-step explanation:
The easiest way of find the answer for this is to use what is called the "point-slope" form of a line, because you are in fact given the value of the slope (m) and also a point
it goes through:

In our case the equation becomes:

This can also be written in the slope-intercept form by solving for "y" and operating to remove the parenthesis:

Answer:
<h2><em><u>2</u></em></h2>
Step-by-step explanation:
<em><u>To</u></em><em><u> </u></em><em><u>find</u></em><em><u> </u></em><em><u>value</u></em><em><u>:</u></em>
2x + 3z
<em><u>Given</u></em><em><u> </u></em><em><u>values</u></em><em><u>:</u></em>
x = 4, y = 3 and z = -2
<em><u>Solution</u></em><em><u>:</u></em>
2x + 3z
<em>(</em><em>Putting</em><em> </em><em>the</em><em> </em><em>values</em><em> </em><em>of</em><em> </em><em>x</em><em> </em><em>=</em><em> </em><em>4</em><em> </em><em>and</em><em> </em><em>z</em><em> </em><em>=</em><em> </em><em>-2</em><em>)</em>
= 2(4) + 3(-2)
= 8 - 6
= <em><u>2 (Ans)</u></em>
Answer:
x=13
Step-by-step explanation:
because they're alternate adjacent angles:
5x=78-x
6x=78
x=13
Answer:
a^2 + b^2 + 2ab - (3xy)^1/3
Step-by-step explanation:
Here we want to make a subtraction
Cube root of the product of x and 3y
x * 3y = 3xy
Cube root of this;
(3xy)^1/3
The sum of a and b is (a + b)
Square of this sum;
(a + b)^2 = a^2 + 2ab + b^2
Now, subtract the cube root
we have;
a^2 + b^2 + 2ab - (3xy)^1/3