Answer:
First, find out how many moles of N2I6 you have. Then convert that to grams.
molar mass N2I6 = 789 g
moles N2I6 = 8.2x1022 molecules N2I6 x 1 mole/6.02x1023 molecules = 1.36x10-1 moles = 0.136 moles
grams N2I6 = 0.136 moles x 789 g/mole = 107 g = 110 g (to 2 significant figures)
<u>Given information:</u>
Mass of NaCl (m) = 87.75 g
Volume of solution (V) = 500 ml = 0.5 L
Molar mass of NaCl (M) = 58.44 g/mol
<u>To determine:</u>
The molarity of NaCl solution
<u>Explanation:</u>
Molarity is defined as the number of moles of solute(n) dissolved per liter of solution (V)
i.e. M = moles of solute/liters of solution = n/V
Moles of solute (n) = mass of solute (m)/molar mass (M)
moles of NaCl = 87.75 g/58.55 g.mol-1 = 1.499 moles
Therefore,
Molarity of NaCl = 1.499 moles/0.5 L = 2.998 moles/lit ≅ 3 M
<u>Ans: (D)</u>
Answer:
At -13
, the gas would occupy 1.30L at 210.0 kPa.
Explanation:
Let's assume the gas behaves ideally.
As amount of gas remains constant in both state therefore in accordance with combined gas law for an ideal gas-

where
and
are initial and final pressure respectively.
and
are initial and final volume respectively.
and
are initial and final temperature in kelvin scale respectively.
Here
,
,
,
and
Hence 



So at -13
, the gas would occupy 1.30L at 210.0 kPa.
The answer that h are looking for is c