The F atom . Oxygen has a -2 charge and fluorine has a +1 charge
Explanation:
In a covalent bond the electrons are simultaneously attracted by the two atomic nuclei.
Explanation:
Expression for the
speed is as follows.

where,
= root mean square speed
k = Boltzmann constant
T = temperature
M = molecular mass
As the molecular weight of oxygen is 0.031 kg/mol and R = 8.314 J/mol K. Hence, we will calculate the value of
as follows.

= 
= 498.5 m/s
Hence,
for oxygen atom is 498.5 m/s.
For nitrogen atom, the molecular weight is 0.028 kg/mol. Hence, we will calculate its
speed as follows.

= 
= 524.5 m/s
Therefore,
speed for nitrogen is 524.5 m/s.
Answer:
74.81 grams of calcium carbonate are produced from 79.3 g of sodium carbonate.
Explanation:
The balanced reaction is:
Na₂CO₃ + Ca(NO₃)₂ ⟶ CaCO₃ + 2 NaNO₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- Na₂CO₃: 1 mole
- Ca(NO₃)₂: 1 mole
- CaCO₃: 1 mole
- NaNO₃: 2 mole
Being the molar mass of the compounds:
- Na₂CO₃: 106 g/mole
- Ca(NO₃)₂: 164 g/mole
- CaCO₃: 100 g/mole
- NaNO₃: 85 g/mole
then by stoichiometry the following quantities of mass participate in the reaction:
- Na₂CO₃: 1 mole* 106 g/mole= 106 g
- Ca(NO₃)₂: 1 mole* 164 g/mole= 164 g
- CaCO₃: 1 mole* 100 g/mole= 100 g
- NaNO₃: 2 mole* 85 g/mole= 170 g
You can apply the following rule of three: if by stoichiometry 106 grams of Na₂CO₃ produce 100 grams of CaCO₃, 79.3 grams of Na₂CO₃ produce how much mass of CaCO₃?

mass of CaCO₃= 74.81 grams
<u><em>74.81 grams of calcium carbonate are produced from 79.3 g of sodium carbonate.</em></u>