1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mandarinka [93]
2 years ago
10

What is the perimeter of this triangle?

Mathematics
1 answer:
Annette [7]2 years ago
5 0

Answer:

41.8

Step-by-step explanation:

You might be interested in
There were 350 members in the high school marching band last year. This year, the number of marching band members increased by 5
Rudiy27

Answer:

The percentage of the number of marching band members increased by 16% this year.

Step-by-step explanation:

\frac{56}{350} x 100% = 16%

56 is 16% of 350

3 0
3 years ago
Read 2 more answers
Could ya'll give me a hand on this?
Georgia [21]
I hope this helps you

6 0
3 years ago
Read 2 more answers
Find the area of a trapezoid with base 1 side = 10 base 2 side = 16 and 3​
mart [117]

Answer:

Area of Trapezoid is 39 unit²

Step-by-step explanation:

Given as :

For A Trapezoid

The measure of base side 1 = b_1 = 10 unit

The measure of base side 2 = b_2 = 16 unit

The height of the Trapezoid = h = 3 unit

Let  The Area of Trapezoid = A square unit

<u>Now, From Formula</u>

Area of Trapezoid = \dfrac{1}{2} × (sum of opposite base) × height

I.e A =  \dfrac{1}{2} × (b_1 + b_2) × h

Or, A =  \dfrac{1}{2} × (10 unit + 16 unit) × 3 unit

Or, A =  \dfrac{1}{2} × (26 unit) × 3 unit

Or, A =  \dfrac{1}{2} × 78 unit²

Or, A = \dfrac{78}{2} unit²

I.e A = 39 unit²

So, The Area of Trapezoid = A = 39 unit²

Hence, The Area of Trapezoid is 39 unit² . Answer

6 0
3 years ago
Verizon charges a $40 sign-up fee and the $60 a month for their new hotspot. T-Mobile
o-na [289]

Step-by-step explanation:

Start Unlimited: 

$70 for one line

$60 for two lines

$45 for three lines

$35 for four lines

Play More Unlimited: 

$80 for one line

$70 for two lines

$55 for three lines

$45 for four lines

Do More Unlimited: 

$80 for one line

$70 for two lines

$55 for three lines

$45 for four lines

Get More Unlimited: 

$90 for one line

$80 for two lines

$65 for three lines

$55 for four lines

8 0
3 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • What is the least common denominator of 34 , 54 , and 32 ?
    9·1 answer
  • I don't understand this.​
    11·2 answers
  • The growth of a bug population shows a geometric sequence as shown in the table. This pattern continues indefinitely. What will
    12·2 answers
  • Derrick family ordered 3 pizza with 8 slices each they ate 3/8 of the pizza what percentage of the pizza was left over
    6·1 answer
  • a soccer team played 47 games and won 33.Rounding to the nearest whole number,what percent of its games did the team win?
    6·1 answer
  • What is the slope of the line?
    5·2 answers
  • At a popular arcade, Lana bought a game card worth 135 game credits. Lana and a friend used the card to play Flappy Fish, a game
    14·2 answers
  • Given () = 2, = 1, and ∆ = 0.6:
    6·1 answer
  • What is 36x5 guys can you please help me
    5·2 answers
  • Someone help with this please
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!