So for this, we will be doing a system of equations, with one equation representing the total invested and the other equation representing the total gained from the investments. But first, we have to do calculations:
firstly, to represent a percentage gain (in this case 12% gain) you are to add 0.12 (12% in decimal form) to 1 to get 1.12. <em>Keep 1.12 in mind, as it will be used for the equations.</em>
Next, to represent a percentage loss (in this case 11%), you are to subtract 0.11 (11% in decimal form) from 1 to get 0.89. <em>Keep 0.89 in mind, as it will be used in the equations.</em>
Next, we need to find the total amount of money after the investments. To do this, add 21,000 and 1,715 together to get 22,715. <u>$22,715 is the total amount of money gained in 1 year.</u>
Now that we have all of our information, we can form our equations as such:
- Let x = $ invested into the account with 12% gain and y = $ invested into the account with 11% loss
![x+y=21000\\1.12x+0.89y=22715](https://tex.z-dn.net/?f=x%2By%3D21000%5C%5C1.12x%2B0.89y%3D22715)
Now with these system of equations, I will be using the substitution method. So firstly, with the first equation subtract x on both sides of that equation:
![y=21000-x\\1.12x+0.89y=22715](https://tex.z-dn.net/?f=y%3D21000-x%5C%5C1.12x%2B0.89y%3D22715)
Now that we know that y = 21000 - x, replace y for (21000 - x) in the second equation and solve for x as such:
![1.12x+0.89(21000-x)=22715\\1.12x+18690-0.89x=22715\\0.23x+18690=22715\\0.23x=4025\\x=17500](https://tex.z-dn.net/?f=1.12x%2B0.89%2821000-x%29%3D22715%5C%5C1.12x%2B18690-0.89x%3D22715%5C%5C0.23x%2B18690%3D22715%5C%5C0.23x%3D4025%5C%5Cx%3D17500)
Now that we have the value of x, substitute it into either equation to solve for y:
![17500+y=21000\\y=3500\\\\1.12(17500)+0.89y=22715\\19600+0.89y=22715\\0.89y=3115\\y=3500](https://tex.z-dn.net/?f=17500%2By%3D21000%5C%5Cy%3D3500%5C%5C%5C%5C1.12%2817500%29%2B0.89y%3D22715%5C%5C19600%2B0.89y%3D22715%5C%5C0.89y%3D3115%5C%5Cy%3D3500)
<u>In short, $17500 was invested into the account that gained 12% and $3500 was invested into the account that had lossed 11%.</u>