Answer:
All are correct
Explanation:
1) The angular momentum quantum number, l, are the subshells within a shell (principle quantum number) it talks about the "form" of an orbital, the number itself tells you about the number of angular nodes (a plane without electronic density). It starts at l=0 where you don't see any nodes and it takes the form of an sphere, and we knowing it bu another name an s-orbital. It takes values up to n-1.
l=0 (sphere - s-orbital)
l=1 (p-orbital)
l=2 (d-orbital)
2) The magnetic quatum number, ml relates to the number of orbitals within a subshell then it is related with l, taking values form -l to l incluing 0.
For l=0 (s-orbital) ml=0
For l=1 (p-orbital) ml=1,0,-1
For l=2 (d-orbital) ml=2,1,0,-1,-2
3) In every shell we are restricted by the total number of nodes of any orbital. Then if we want a d-orbital with l=3 we need at least 3 plane nodes only achievable with n=3 at least.
Answer:
In chemistry, a single bond is a chemical bond between two atoms involving two valence electrons. That is, the atoms share one pair of electrons where the bond forms. Therefore, a single bond is a type of covalent bond.
Explanation:
(copied from Google)
The final temperature in Celsius of the metal block is 49°C.
<h3>How to find the number of moles ?</h3>
Moles water = 
= 
= 0.0266 moles
Heat lost by water = 0.0266 mol x 44.0 kJ/mol
= 1.17 kJ
= 1170 J [1 kJ = 1000 J]
Heat lost = Heat gained
Heat gained by aluminum = 1170 J
1170 = 55 x 0.903 (T - 25) = 49.7 T - 1242
1170 + 1242 = 49.7 T
T = 48.5°C (49°C at two significant figures)
Thus from the above conclusion we can say that The final temperature in Celsius of the metal block is 49°C.
Learn more about the Moles here: brainly.com/question/15356425
#SPJ1
I think you add 29.57 + 80 and the answer would be 30.37