Answer:
<u>C) 4</u>
Explanation:
<u>The reaction</u> :
- C (s) + 2H₂ (g) ⇒ CH₄ (g)
12g 4g 16g
Hence, based on this we can say that : <u>2 moles of hydrogen gas are needed to produce 16g of methane.</u>
<u />
<u>For 32g of methane</u>
- Number of moles of H₂ = 32/16 × 2
- Number of moles of H₂ = <u>4</u>
Answer:
the answer is longgitudinal
Smaller than; less of it will dissolve before the solution is saturated
Test tubes, flasks, bunsen burners, random chemical equations
<h3>
Answer:</h3>
1 x 10^13 stadiums
<h3>
Explanation:</h3>
We are given that;
1 stadium holds = 1 × 10^5 people
Number of iron atoms is 1 × 10^18 atoms
Assuming the stadium would carry an equivalent number of atoms as people.
Then, 1 stadium will carry 1 × 10^5 atoms
Therefore,
To calculate the number of stadiums that can hold 1 × 10^18 atoms we divide the total number of atoms by the number of atoms per stadium.
Number of stadiums = Total number of atoms ÷ Number of atoms per stadium
= 1 × 10^18 atoms ÷ 1 × 10^5 atoms/stadium
= 1 × 10^13 Stadiums
Thus, 1 × 10^18 atoms would occupy 1 × 10^13 stadiums