1. What is the force of the marble?
For an object near the surface of the earth, the gravitational force acting upon the object is given by:
F = mg
F is the gravitational force, m is the object's mass, and g is the acceleration of objects due to earth's gravity.
Given values:
m = 0.025kg, g = 9.8m/s²
Plug in the given values and solve for F:
F = 0.025×9.8
F = 0.25N
2. What is the marble's potential energy at the start of its fall?
The gravitational potential energy of an object near the earth's surface is given by:
PE = mgh
PE is the potential energy, m is the object's mass, g is the acceleration of objects due to earth's gravity, and h is the object's relative height.
new given values:
h = 0.08m
Since F = mg, you can simply multiply F×h to get PE. Use the result from question 1:
PE = F×h
PE = 0.25×0.08
PE = 0.02J
Answer:
Mechanical waves
Explanation:
Waves are periodic oscillations, that carry energy, but not matter.
Waves are classified into two types:
- Mechanical waves: these waves are produced by the oscillations of the particles in a medium, which can oscillate along the direction of propagation of the wave (longitudinal wave) or perpendicular to the direction of motion of the wave (transverse wave). These waves can only propagate in a medium, so they cannot travel in a vacuum. Examples of mechanical waves are sound waves.
- Electromagnetic waves: these waves are produced by the oscillations of electric and magnetic field. They are transverse waves. They are the only type of wave able to propagate through a vacuum (so, through space).
Therefore, the waves that need molecules in order to transfer energy are mechanical waves.
Answer:
e e e e e e e e e e i have to write and i dont know what i could write
Answer:
Explanation:
magnetic field B = (3 i + 8 x 2 j )x 10⁻³ T
= (3 i + 16 j )x 10⁻³ T
L = - i ( unit length of conductor )
Force F = I ( L x B ) , I is current
= 5 [ - i x ( 3i + 16 j ) 10⁻³]
= 5 ( - 16 k ) x 10⁻³
F = - 80 x 10⁻³ k