Answer:
b) q large and m small
Explanation:
q is large and m is small
We'll express it as :
q > m
As we know the formula:
F = Eq
And we also know that :
F = Bqv
F = 
Bqv = 
or Eq = 
Assume that you want a velocity selector that will allow particles of velocity v⃗ to pass straight through without deflection while also providing the best possible velocity resolution. You set the electric and magnetic fields to select the velocity v⃗ . To obtain the best possible velocity resolution (the narrowest distribution of velocities of the transmitted particles) you would want to use particles with q large and m small.
Answer:
more than
Explanation:
In a nuclear fusion reaction, the mass of the products is more than the mass of the reactants.
<span>If Shelly rolls ball A in the positive x direction with a velocity of 7.5 meters/second, and It hits stationary ball B and they undergo elastic collision, thus the two balls have different masses, then the following statement which is true is the statement that stated that there was no y-momentum initially.</span>
Answer:
820 nm
Explanation:
We are given that
Wavelength=



For first minimum therefore
m=0
We know that for destructive interference

Substitute the values



Hence, the distance between two slits that produces the first minimum=820 nm
Answer:
DU = 120 Joules
Explanation:
Given the following data;
Quantity of energy = 200 J
Work = 80 J
To find the change in internal energy;
Mathematically, the change in internal energy of a system is given by the formula;
DU = Q - W
Where;
DU is the change in internal energy.
Q is the quantity of energy.
W is the work done.
Substituting into the formula, we have;
DU = 200 - 80
DU = 120 Joules