Answer:
W = 0 J
Explanation:
The amount of work done by gas at constant pressure is given by the following formula:

where,
W = Work done by the gas
P = Pressure of the gas
ΔV = Change in the volume of the gas
Since the volume of the gas is constant. Therefore, there is no change in the volume of the gas:

<u>W = 0 J</u>
Answer:
6.5 m/s
Explanation:
We are given that
Distance, s=100 m
Initial speed, u=1.4 m/s
Acceleration, 
We have to find the final velocity at the end of the 100.0 m.
We know that

Using the formula






Hence, her final velocity at the end of the 100.0 m=6.5 m/s
<span>Answer: Burrhus Frederic Skinner's Operant Conditioning.
</span><span>B.F. Skinner believed that to understand behavior, in the best way, is to look at the root causes or reasons of an action and its outcomes.
</span>
Skinner proposes the Law of Effect-Reinforcement. Here,he differentiated the positively reinforced behavior or the strengthened behavior, the negatively reinforced behavior (removal of the unpleasant experience), and weakened behavior because of punishment.
<span>
In positive reinforcement, behavior is strengthened through providing an outcome, an effect that an individual finds rewarding. Negative reinforcement also strengthens behavior because the unpleasant experience was removed. Punishment on the other hand is an opposite to reinforcement. Instead of increasing the response, it eliminates it or weakens it.
</span>
Boron Group
elements have three valence electrons and are fairly reactive. All of them are solids at room temperature. Boron is a very hard, black metalloid with a high melting point.
Answer:
2. [B] = [L]/[T] and [C] = [L]/[T]
Explanation:
I assume you mean this:
A = B² + 2B⁴/C²
Since you can't add numbers with different units (for example, you can't add seconds to meters), each term in the sum must have the same units as A.
B² = [L]²/[T]²
B = [L]/[T]
B⁴/C² = [L]²/[T]²
C²/B⁴ = [T]²/[L]²
C² = B⁴ [T]²/[L]²
C² = ([L]/[T])⁴ [T]²/[L]²
C² = [L]²/[T]²
C = [L]/[T]
Notice we ignore the 2 coefficient, which is unitless.