We have to prove that rectangles are parallelograms with congruent Diagonals.
Solution:
1. ∠R=∠E=∠C=∠T=90°
2. ER= CT, EC ║RT
3. Diagonals E T and C R are drawn.
4. Shows Quadrilateral R E CT is a Rectangle.→→[Because if in a Quadrilateral One pair of Opposite sides are equal and parallel and each of the interior angle is right angle than it is a Rectangle.]
5. Quadrilateral RECT is a Parallelogram.→→[If in a Quadrilateral one pair of opposite sides are equal and parallel then it is a Parallelogram]
6. In Δ ERT and Δ CTR
(a) ER= CT→→[Opposite sides of parallelogram]
(b) ∠R + ∠T= 90° + 90°=180°→→→Because RECT is a rectangle, so ∠R=∠T=90°]
(c) Side TR is Common.
So, Δ ERT ≅ Δ CTR→→[SAS]
Diagonal ET= Diagonal CR →→→[CPCTC]
In step 6, while proving Δ E RT ≅ Δ CTR, we have used
(b) ∠R + ∠T= 90° + 90°=180°→→→Because RECT is a rectangle, so ∠R=∠T=90°]
Here we have used ,Option (D) : Same-Side Interior Angles Theorem, which states that Sum of interior angles on same side of Transversal is supplementary.
Answer:
y = 32,000(1.08)^x
Step-by-step explanation:
The exponential growth equation is y = a(1 + r)^x, where a is the initial amount, r is rate as a decimal, and x is the time.
In this situation, 32,000 is the initial amount (a) and 0.08 is the rate (r)
If we plug these into the equation, we get the equation y = 32,000(1.08)^x
So, y = 32,000(1.08)^x is the correct answer.
Answer:
48
Step-by-step explanation:
3 times 13 (john's age) = 39
39 + 9 = 48 (nine years older than 3 times (39) so you add 9)
Therefore, Tim is 48.
Answer:
it takes 10 ones to make a ten.