Answer:
We have expanded formula of (-4x-1)² = a²+2ab+b².
So, we write the formula in square form as (a+b)².
Since we have a²-b² in step 4. We further write this as (a+b)(a-b). This is the factor formula of a²-b².
As we had two terms in place of in (a+b)(a-b), we multiply the term 'b' with '+' and '-' sign respectively.
Write the second expression given in the question.
Write the terms in the form of cube.
Write the factor formula of a³-b³) in the form of (a-b)(a²+ab+b²).
Write the H.C.F. (Highest Common Factor) of the given expressions by analysing the factors you generated in each expressions. Here, (4x²+2x+1) are the common factors.
Answer:
its 84 but tysm thats so sweet
Step-by-step explanation:
Answer:
1; -11+ 26 =15
2: 2- (-3) =5
3: 10+ (-4) = 7
4: 11 + -8 =3
5: -2 + 3 =1
6: 8 - 12 = -4
Step-by-step explanation:
!
Given:
The given quadratic polynomial is :

To find:
The quadratic polynomial whose zeroes are negatives of the zeroes of the given polynomial.
Solution:
We have,

Equate the polynomial with 0 to find the zeroes.

Splitting the middle term, we get




The zeroes of the given polynomial are -3 and 4.
The zeroes of a quadratic polynomial are negatives of the zeroes of the given polynomial. So, the zeroes of the required polynomial are 3 and -4.
A quadratic polynomial is defined as:




Therefore, the required polynomial is
.