Well, since the first 2.28 is in between the two lines you must find is absolute value.
Absolute value is how many places a number is away from 0.
So the absolute value of 2.28 is 2.28, its just its own number.
If you were working with negative numbers though, for example -7, the absolute value would be 7 because it is 7 spaces away from 0.
Answer:
13
Step-by-step explanation:
I used the calculator heheh
Hope It Helps
Answer:
what do you need I'm not the smartest person but I may be able to help :)
Find the midpoint:
m= x1+x2/2; y1+y2/2
m= 9+-1/2; 8+-2/2
m= 8/2; 6/2
m= (4,3)
(4,3) is your answer.
I hope this helps!
~kaikers
Answer:
f(2n)-f(n)=log2
b.lg(lg2+lgn)-lglgn
c. f(2n)/f(n)=2
d.2nlg2+nlgn
e.f(2n)/(n)=4
f.f(2n)/f(n)=8
g. f(2n)/f(n)=2
Step-by-step explanation:
What is the effect in the time required to solve a prob- lem when you double the size of the input from n to 2n, assuming that the number of milliseconds the algorithm uses to solve the problem with input size n is each of these function? [Express your answer in the simplest form pos- sible, either as a ratio or a difference. Your answer may be a function of n or a constant.]
from a
f(n)=logn
f(2n)=lg(2n)
f(2n)-f(n)=log2n-logn
lo(2*n)=lg2+lgn-lgn
f(2n)-f(n)=lg2+lgn-lgn
f(2n)-f(n)=log2
2.f(n)=lglgn
F(2n)=lglg2n
f(2n)-f(n)=lglg2n-lglgn
lg2n=lg2+lgn
lg(lg2+lgn)-lglgn
3.f(n)=100n
f(2n)=100(2n)
f(2n)/f(n)=200n/100n
f(2n)/f(n)=2
the time will double
4.f(n)=nlgn
f(2n)=2nlg2n
f(2n)-f(n)=2nlg2n-nlgn
f(2n)-f(n)=2n(lg2+lgn)-nlgn
2nLg2+2nlgn-nlgn
2nlg2+nlgn
5.we shall look for the ratio
f(n)=n^2
f(2n)=2n^2
f(2n)/(n)=2n^2/n^2
f(2n)/(n)=4n^2/n^2
f(2n)/(n)=4
the time will be times 4 the initial tiote tat ratio are used because it will be easier to calculate and compare
6.n^3
f(n)=n^3
f(2n)=(2n)^3
f(2n)/f(n)=(2n)^3/n^3
f(2n)/f(n)=8
the ratio will be times 8 the initial
7.2n
f(n)=2n
f(2n)=2(2n)
f(2n)/f(n)=2(2n)/2n
f(2n)/f(n)=2