Answer: complex equations has n number of solutions, been n the equation degree. In this case:
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i11,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi11%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i101,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi101%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i191,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi191%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i281,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi281%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i78,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi78%2C75%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i168,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi168%2C75%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i258,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi258%2C75%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i348,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi348%2C75%C2%B0%7D)
Step-by-step explanation:
I start with a variable substitution:

Then:

Solving the quadratic equation:


Replacing for the original variable:
![Z=\sqrt[4]{0,5+0,5i}](https://tex.z-dn.net/?f=Z%3D%5Csqrt%5B4%5D%7B0%2C5%2B0%2C5i%7D)
or ![Z=\sqrt[4]{0,5-0,5i}](https://tex.z-dn.net/?f=Z%3D%5Csqrt%5B4%5D%7B0%2C5-0%2C5i%7D)
Remembering that complex numbers can be written as:

Using this:

Solving for the modulus and the angle:
![Z=\left \{ {{\sqrt[4]{\frac{\sqrt{2}}{2} e^{i45}} = \sqrt[4]{\frac{\sqrt{2}}{2} } \sqrt[4]{e^{i45}} } \atop {\sqrt[4]{\frac{\sqrt{2}}{2} e^{i-45}} = \sqrt[4]{\frac{\sqrt{2}}{2} } \sqrt[4]{e^{i-45}} }} \right.](https://tex.z-dn.net/?f=Z%3D%5Cleft%20%5C%7B%20%7B%7B%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20e%5E%7Bi45%7D%7D%20%3D%20%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%7D%20%5Csqrt%5B4%5D%7Be%5E%7Bi45%7D%7D%20%7D%20%5Catop%20%7B%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20e%5E%7Bi-45%7D%7D%20%3D%20%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%7D%20%5Csqrt%5B4%5D%7Be%5E%7Bi-45%7D%7D%20%7D%7D%20%5Cright.)
The possible angle respond to:

Been "RAng" the resultant angle, "Ang" the original angle, "n" the degree of the root and "i" a value between 1 and "n"
In this case n=4 with 2 different angles: Ang = 45º and Ang = 315º
Obtaining 8 different angles, therefore 8 different solutions.
Answer:
The correct answer B) The volumes are equal.
Step-by-step explanation:
The area of a disk of revolution at any x about the x- axis is πy² where y=2x. If we integrate this area on the given range of values of x from x=0 to x=1 , we will get the volume of revolution about the x-axis, which here equals,

which when evaluated gives 4pi/3.
Now we have to calculate the volume of revolution about the y-axis. For that we have to first see by drawing the diagram that the area of the CD like disk centered about the y-axis for any y, as we rotate the triangular area given in the question would be pi - pi*x². if we integrate this area over the range of value of y that is from y=0 to y=2 , we will obtain the volume of revolution about the y-axis, which is given by,

If we just evaluate the integral as usual we will get 4pi/3 again(In the second step i have just replaced x with y/2 as given by the equation of the line), which is the same answer we got for the volume of revolution about the x-axis. Which means that the answer B) is correct.
There are 168 hours in one week.
Hope this helps! >.<
Answer:
20 inches
Step-by-step explanation:
The correct answer is 20 because there is 4 sides and each side is worth of the length 5 so 5 times 4 - is what 20 . So the answer 20 is right . Hope this helps, you are welcome.