1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wittaler [7]
3 years ago
6

Solve the following inequality algebraically: look at the picture

Mathematics
1 answer:
seraphim [82]3 years ago
8 0
The answer is b -9 < x < 12
You might be interested in
What is the equation for the line in slope intercept form PLEASE HELP​
aliina [53]

Answer:

y=-4x+5

Step-by-step explanation:

6 0
2 years ago
What’s the slope of the line??
emmainna [20.7K]
If I did the math correctly I’d should be -5 or rewritten as -5/1.
8 0
3 years ago
WHO EVER ANSWERS FIRST GETS THE BRAINIEST HURRY
algol13

What grade are u inhgffg

8 0
3 years ago
Apply the method of undetermined coefficients to find a particular solution to the following system.wing system.
jarptica [38.1K]
  • y''-y'+y=\sin x

The corresponding homogeneous ODE has characteristic equation r^2-r+1=0 with roots at r=\dfrac{1\pm\sqrt3}2, thus admitting the characteristic solution

y_c=C_1e^x\cos\dfrac{\sqrt3}2x+C_2e^x\sin\dfrac{\sqrt3}2x

For the particular solution, assume one of the form

y_p=a\sin x+b\cos x

{y_p}'=a\cos x-b\sin x

{y_p}''=-a\sin x-b\cos x

Substituting into the ODE gives

(-a\sin x-b\cos x)-(a\cos x-b\sin x)+(a\sin x+b\cos x)=\sin x

-b\cos x+a\sin x=\sin x

\implies a=1,b=0

Then the general solution to this ODE is

\boxed{y(x)=C_1e^x\cos\dfrac{\sqrt3}2x+C_2e^x\sin\dfrac{\sqrt3}2x+\sin x}

  • y''-3y'+2y=e^x\sin x

\implies r^2-3r+2=(r-1)(r-2)=0\implies r=1,r=2

\implies y_c=C_1e^x+C_2e^{2x}

Assume a solution of the form

y_p=e^x(a\sin x+b\cos x)

{y_p}'=e^x((a+b)\cos x+(a-b)\sin x)

{y_p}''=2e^x(a\cos x-b\sin x)

Substituting into the ODE gives

2e^x(a\cos x-b\sin x)-3e^x((a+b)\cos x+(a-b)\sin x)+2e^x(a\sin x+b\cos x)=e^x\sin x

-e^x((a+b)\cos x+(a-b)\sin x)=e^x\sin x

\implies\begin{cases}-a-b=0\\-a+b=1\end{cases}\implies a=-\dfrac12,b=\dfrac12

so the solution is

\boxed{y(x)=C_1e^x+C_2e^{2x}-\dfrac{e^x}2(\sin x-\cos x)}

  • y''+y=x\cos(2x)

r^2+1=0\implies r=\pm i

\implies y_c=C_1\cos x+C_2\sin x

Assume a solution of the form

y_p=(ax+b)\cos(2x)+(cx+d)\sin(2x)

{y_p}''=-4(ax+b-c)\cos(2x)-4(cx+a+d)\sin(2x)

Substituting into the ODE gives

(-4(ax+b-c)\cos(2x)-4(cx+a+d)\sin(2x))+((ax+b)\cos(2x)+(cx+d)\sin(2x))=x\cos(2x)

-(3ax+3b-4c)\cos(2x)-(3cx+3d+4a)\sin(2x)=x\cos(2x)

\implies\begin{cases}-3a=1\\-3b+4c=0\\-3c=0\\-4a-3d=0\end{cases}\implies a=-\dfrac13,b=c=0,d=\dfrac49

so the solution is

\boxed{y(x)=C_1\cos x+C_2\sin x-\dfrac13x\cos(2x)+\dfrac49\sin(2x)}

7 0
3 years ago
The sum of eight times a number and negative exceeds twelve.<br>​
11111nata11111 [884]

Answer:8x + -4 > 12

8x > 16

x > 2

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • For f (x)= -4+2, find f (x) when x=-1
    11·1 answer
  • What is the number of real solutions?
    14·1 answer
  • Grant's credit card has an apr of 11.28% and it just changed its compounding period from monthly to daily . What happen to the i
    9·1 answer
  • CAN SOMEONE HELP ME !!!!!!!!!
    11·1 answer
  • What is the values of x in X/5+4=6
    7·1 answer
  • Answer the following questions using metric conversions.
    9·1 answer
  • Find the area of a square with the side lengths of (1/2x+2)
    14·1 answer
  • I NEED HELP!!!! I am currently reviewing for my last test, and i am struggling with this problem. I KNOW WHAT THE ANSWER IS BUT
    11·1 answer
  • What are two different ways 2/3x=10 could be solved for x
    6·1 answer
  • Find the midpoint between the given points: (2,-1), (10,-9)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!