8.3 × 106 - trust me, it's actually right. You can use the calculator to see if I'm correct. Punch in <span>8.3 × 106 = 6.6</span>
0.091 moles are contained in 2.0 L of N2 at standard temperature and pressure.
Explanation:
Data given:
volume of the nitrogen gas = 2 litres
Standard temperature = 273 K
Standard pressure = 1 atm
number of moles =?
R (gas constant) = 0.08201 L atm/mole K
Assuming nitrogen to be an ideal gas at STP, we will use Ideal Gas law
PV = nRT
rearranging the equation to calculate number of moles:
PV = nRT
n = 
putting the values in the equation:
n = 
n = 0.091 moles
0.091 moles of nitrogen gas is contained in a container at STP.
Answer:
Chargaff's rule, also known as the complementary base pairing rule, states that DNA base pairs are always adenine with thymine (A-T) and cytosine with guanine (C-G). A purine always pairs with a pyrimidine and vice versa. However, A doesn't pair with C, despite that being a purine and a pyrimidine.
Explanation:
In these nucleotides, there is one of the four possible bases: adenine (A), guanine (G), cytosine (C), or thymine (T) (Figure below). Adenine and guanine are purine bases, and cytosine and thymine are pyrimidine bases. Chemical structure of the four nitrogenous bases in DNA✔✔
<h2>
Hello!</h2>
The answer is:
The third option, 79.8%
<h2>
Why?</h2>
To calculate the percent yield we need to divide the actual yield by the theoretical yield, and then, multiply it by 100 in order to find the percent.
So, we from the statement we know the following information:

Let's use the following formula and substitute the given information:


Hence, we have that the correct option is the third option, the percent yield is 79.8%.
Have a nice day!