Answer:
0.125 mg
Explanation:
<em>The correct answer would be 0.125 mg</em>
<u>According to the conversion factor, one milligram of a sample is equivalent to one thousand micrograms of the same sample.</u>
milligram = 
microgram = 
Hence,
1 milligram = 1000 micrograms or 1 microgram =
milligram
Therefore, 125 micrograms will be:
125/1000 = 0.125 milligram
Answer: The equilibrium constant for the overall reaction is 
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios.
a) 
![K_a=\frac{[PCl_3]}{[Cl_2]^{\frac{3}{2}}}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BPCl_3%5D%7D%7B%5BCl_2%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
b) 
![K_b=\frac{[PCl_5]}{[Cl_2]\times [PCl_3]}](https://tex.z-dn.net/?f=K_b%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D)
For overall reaction on adding a and b we get c
c) 
![K_c=\frac{[PCl_5]}{[Cl_2]^\frac{5}{2}}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5E%5Cfrac%7B5%7D%7B2%7D%7D)
![K_c=K_a\times K_b=\frac{[PCl_3]}{[Cl_2]^{\frac{3}{2}}}\times \frac{[PCl_5]}{[Cl_2]\times [PCl_3]}](https://tex.z-dn.net/?f=K_c%3DK_a%5Ctimes%20K_b%3D%5Cfrac%7B%5BPCl_3%5D%7D%7B%5BCl_2%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%5Ctimes%20%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D)
The equilibrium constant for the overall reaction is 
Answer:
<u>136.67 g of Na3PO4 i</u>s required to create 100 gram of NaOH.
Explanation:
The balanced equation:

1 mole Na3PO4 = 164 g/mole (Molar mass)
1 mole NaOH = 40 g/mole (Molar mass)
Now,
1 mole of Na3PO4 produce = 3 mole of NaOH
164 g/mol of Na3PO4 produce = 3(40) g/mol of NaOH
or
120 g/mol of NaOH is produced from = 164 g/mol of Na3PO4
1 g/mol of NaOH is produced from =

100 grams of NaOH is produced from =
gram of Na3PO4
calculate,
= 136.67 g
Explanation:
This is correct!
Ions that exist in both the reactant and product side of the equation are referred to as spectator ions. Overall, they do not partake in the reaction. If they are present on both sides of the equation, you can cancel them out.
An example is;
Na+(aq) + Cl−(aq) + Ag+(aq) + NO3−(aq) → Na+(aq) + NO3−(aq) + AgCl(s)
The ions; Na+, NO3−(aq) would be cancelled out to give;
Cl−(aq) + Ag+(aq) → AgCl(s)
Answer:

Explanation:
Hello!
In this case, for the reaction:

In such a way, via the rate proportions, that is written considering the stoichiometric coefficients, we obtain:

Whereas the reactants, CO and H2 have negative stoichiometric coefficients; therefore the rate of disappearance of hydrogen gas is related to the rate of appearance of methanol as shown below:

Which means that the rate of disappearance of hydrogen gas is negative and the rate of appearance of methanol is positive.
Regards!