Answer:
D
Explanation:
Metallic character decreases as you move across a period in the periodic table from left to right. This occurs as atoms more readily accept electrons to fill a valence shell than lose them to remove the unfilled shell. Metallic character increases as you move down an element group in the periodic table. This is because electrons become easier to lose as the atomic radius increases, where there is less attraction between the nucleus and the valence electrons because of the increased distance between them.
Answer:
The composition of air this is because it vmade up of oxygen, nitrogen, Nobel gages and Carbon dioxide
Answer:

Explanation:
We are asked to find how many moles of sodium carbonate are in 57.3 grams of the substance.
Carbonate is CO₃ and has an oxidation number of -2. Sodium is Na and has an oxidation number of +1. There must be 2 moles of sodium so the charge of the sodium balances the charge of the carbonate. The formula is Na₂CO₃.
We will convert grams to moles using the molar mass or the mass of 1 mole of a substance. They are found on the Periodic Table as the atomic masses, but the units are grams per mole instead of atomic mass units. Look up the molar masses of the individual elements.
- Na: 22.9897693 g/mol
- C: 12.011 g/mol
- O: 15.999 g/mol
Remember the formula contains subscripts. There are multiple moles of some elements in 1 mole of the compound. We multiply the element's molar mass by the subscript after it, then add everything together.
- Na₂ = 22.9897693 * 2= 45.9795386 g/mol
- O₃ = 15.999 * 3= 47.997 g/mol
- Na₂CO₃= 45.9795386 + 12.011 + 47.997 =105.9875386 g/mol
We will convert using dimensional analysis. Set up a ratio using the molar mass.

We are converting 57.3 grams to moles, so we multiply by this value.

Flip the ratio so the units of grams of sodium carbonate cancel.




The original measurement of moles has 3 significant figures, so our answer must have the same. For the number we found that is the thousandth place. The 6 in the ten-thousandth place to the right tells us to round the 0 up to a 1.

There are approximately <u>0.541 moles of sodium carbonate</u> in 57.3 grams.
The molar mass of methylammonium bromide is 111u.
<h3>What is molar mass?</h3>
The molar mass is defined as the mass per unit amount of substance of a given chemical entity.
Multiply the atomic weight (from the periodic table) of each element by the number of atoms of that element present in the compound.
Add it all together and put units of grams/mole after the number.
Atomic weight of H is 1u
Atomic weight of N is 14u
Atomic weight of C is 12u
Atomic weight of Br is 79u
Calculating molar mass of
=2(1 x3+ 14+12+ 1 x 3 +79) = 111u
Hence, the molar mass of methylammonium bromide is 111u.
Learn more about molar mass here:
brainly.com/question/12127540
#SPJ1