Answer: I believe it is 60-10=x because it says she purchased it with 60$ but recieved 10$ in change causing the amount we dont know to be a variable such as "x"
Answer:
B. 4,1
Step-by-step explanation:
Answer:
X=90
Step-by-step explanation:
x=90 because it is a right angle.
hope that helps!
Answer:
<em>A) (-5,7)</em>
Step-by-step explanation:
<u>Functions and Relations</u>
A set of values A can have a relation with another set B as long as at least one element of A has at least one image in B. Functions are special relations where each element of A (the domain of the function) has one and only one image on B (the range of the function).
By looking at the options, we can see that x=9, x=-8, and x=-1 already have defined values in Y, so if we define another value for any of them the relation will stop being a function. The only possible choice to preserve the function is the option

Answer:
a)
a1 = log(1) = 0 (2⁰ = 1)
a2 = log(2) = 1 (2¹ = 2)
a3 = log(3) = ln(3)/ln(2) = 1.098/0.693 = 1.5849
a4 = log(4) = 2 (2² = 4)
a5 = log(5) = ln(5)/ln(2) = 1.610/0.693 = 2.322
a6 = log(6) = log(3*2) = log(3)+log(2) = 1.5849+1 = 2.5849 (here I use the property log(a*b) = log(a)+log(b)
a7 = log(7) = ln(7)/ln(2) = 1.9459/0.6932 = 2.807
a8 = log(8) = 3 (2³ = 8)
a9 = log(9) = log(3²) = 2*log(3) = 2*1.5849 = 3.1699 (I use the property log(a^k) = k*log(a) )
a10 = log(10) = log(2*5) = log(2)+log(5) = 1+ 2.322= 3.322
b) I can take the results of log n we previously computed above to calculate 2^log(n), however the idea of this exercise is to learn about the definition of log_2:
log(x) is the number L such that 2^L = x. Therefore 2^log(n) = n if we take the log in base 2. This means that
a1 = 1
a2 = 2
a3 = 3
a4 = 4
a5 = 5
a6 = 6
a7 = 7
a8 = 8
a9 = 9
a10 = 10
I hope this works for you!!