Answer:
I= (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C (for a≠0)
Step-by-step explanation:
for
I= ∫x^n . e^ax dx
then using integration by parts we can define u and dv such that
I= ∫(x^n) . (e^ax dx) = ∫u . dv
where
u= x^n → du = n*x^(n-1) dx
dv= e^ax dx→ v = ∫e^ax dx = (e^ax) /a ( for a≠0 .when a=0 , v=∫1 dx= x)
then we know that
I= ∫u . dv = u*v - ∫v . du + C
( since d(u*v) = u*dv + v*du → u*dv = d(u*v) - v*du → ∫u*dv = ∫(d(u*v) - v*du) =
(u*v) - ∫v*du + C )
therefore
I= ∫u . dv = u*v - ∫v . du + C = (x^n)*(e^ax) /a - ∫ (e^ax) /a * n*x^(n-1) dx +C = = (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C
I= (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C (for a≠0)
I think it's the Multiplication Property of Equality.
Hope this helps you! :)
Answer:
g(f(2)) = 11
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = 3x - 2
g(x) = x² - 5
<u>Step 2: Find g(f(2))</u>
f(2)
- Substitute in <em>x</em>: f(2) = 3(2) - 2
- Multiply: f(2) = 6 - 2
- Subtract: f(2) = 4
g(f(2))
- Substitute in <em>x</em>: g(4) = 4² - 5
- Exponents: g(4) = 16 - 5
- Subtract: g(4) = 11
62.5% is the percent off 5/8
Answer:
m^2
Step-by-step explanation:
You only need the surface area, which means you will not use cubed (^3). But the surface area is two dimensions (length and width). SO you must use m^2.