<h3>
Answer:</h3>
The Equilibrium would shift to produce more NO
<h3>
Explanation:</h3>
The reaction is;
N₂(g) + O₂(g) ⇆ 2NO(g)
- When a reaction is at equilibrium then the forward reaction rate will be equivalent to the reverse reaction rate. Additionally, the concentration of the reactants and products are the same.
- From Le Chatelier's principle, additional reactants favor the formation of more products while additional products favor the formation of more reactants.
- For example, when more oxygen is added then more Nitrogen (II) oxide will be formed.
- Oxygen is a reactant and when increased it favors forward reaction which leads to the formation of more NO which is the product.
111.1 mL of water
Explanation:
Weight per volume concentration (w/v %) is defined as
weight per volume concentration = (mass of solute (g) / volume of solution (mL)) × 100
volume of solution = (mass of solute × 100) / weight per volume concentration
volume of solution = (1 × 100) / 0.9 = 111.1 mL
volume of water = volume of solution = 111.1 mL
Learn more about:
weight per volume concentration
brainly.com/question/12721794
#learnwithBrainly
Answer:
Just here for the points sorry
Explanation:
Minecraft I will not be able to make the weekend of this trip until Sunday evening and I will be away for the rest of the of the week weekend and I will will be back from London tomorrow for lunchtime a week or so if to for for if to go for the it a the the it a couple of rest in the morning the other week night if and time as I we are have the first one in the evening morning so I'll we have an appointment early for in a the class morning and for and then
Answer:
V = 22.41 L
Explanation:
Given data:
Mass of nitrogen = 14.0 g
Volume of gas at STP = ?
Gas constant = 0.0821 atm.L/mol.K
Solution:
Number of moles of gas:
Number of moles = mass/molar mass
Number of moles= 14 g/ 14 g/mol
Number of moles = 1 mol
Volume of gas:
PV = nRT
1 atm × V = 1 mol × 0.0821 atm.L/mol.K × 273 K
V = 22.41 atm.L / 1 atm
V = 22.41 L
Answer:
50.8 g
Explanation:
Equation of reaction.

From the given information, the number of moles of methane = mass/ molar mass
= 15.4 g / 16.04 g/mol
= 0.960 mol
number of moles of oxygen gas = 90.3 g / 32 g/ mol
= 2.82 mol
Since 1 mol of methane requires 2 moles of oxygen
Then 0.960 mol of methane will require = 0.960 mol × 2 = 1.92 mol of oxygen gas
Thus, methane serves as a limiting reagent.
2.82 mol oxygen gas will result in 2.82 moles of water
So, the theoretical yield of water = moles × molar mass
= 2.82 mol × 18.01528 g/mol
= 50.8 g