Answer: x=2
3x−9x+7−3=−8
Step 1: Simplify both sides of the equation.
3x−9x+7−3=−8
3x+−9x+7+−3=−8
(3x+−9x)+(7+−3)=−8
−6x+4=−8
−6x+4=−8
−6x+4−4=−8−4
−6x=−12
−6x
−6
=
−12
−6
x=2
Answer:
the slope is 3
Step-by-step explanation:
Answer:
range {3, 5, 6, 7 }
Step-by-step explanation:
to find the range substitute each value of x from the domain into f(x)
f(- 3) = -(- 3) + 4 = 3 + 4 = 7
f(- 2) = - (- 2 + 4 = 2 + 4 = 6
f(- 1) = - (- 1) + 4 = 1 + 4 = 5
f(1) = - 1 + 4 = 3
range y ∈ { 3, 5, 6, 7 }
Given that <span>Line m is parallel to line n.
We prove that 1 is supplementary to 3 as follows:
![\begin{tabular} {|c|c|} Statement&Reason\\[1ex] Line m is parallel to line n&Given\\ \angle1\cong\angle2&Corresponding angles\\ m\angle1=m\angle2&Deifinition of Congruent angles\\ \angle2\ and\ \angle3\ form\ a\ linear\ pair&Adjacent angles on a straight line\\ \angle2\ is\ supplementary\ to\ \angle3&Deifinition of linear pair\\ m\angle2+m\angle3=180^o&Deifinition of supplementary \angle s\\ m\angle1+m\angle3=180^o&Substitution Property \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7C%7D%0AStatement%26Reason%5C%5C%5B1ex%5D%0ALine%20m%20is%20parallel%20to%20line%20n%26Given%5C%5C%0A%5Cangle1%5Ccong%5Cangle2%26Corresponding%20angles%5C%5C%0Am%5Cangle1%3Dm%5Cangle2%26Deifinition%20of%20Congruent%20angles%5C%5C%0A%5Cangle2%5C%20and%5C%20%5Cangle3%5C%20form%5C%20a%5C%20linear%5C%20pair%26Adjacent%20angles%20on%20a%20straight%20line%5C%5C%0A%5Cangle2%5C%20is%5C%20supplementary%5C%20to%5C%20%5Cangle3%26Deifinition%20of%20linear%20pair%5C%5C%0Am%5Cangle2%2Bm%5Cangle3%3D180%5Eo%26Deifinition%20of%20supplementary%20%5Cangle%20s%5C%5C%0Am%5Cangle1%2Bm%5Cangle3%3D180%5Eo%26Substitution%20Property%0A%5Cend%7Btabular%7D)
![\begin{tabular} {|c|c|} \angle1\ is\ supplementary\ to\ \angle3&Deifinition of supplementary \angle s \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7C%7D%0A%5Cangle1%5C%20is%5C%20supplementary%5C%20to%5C%20%5Cangle3%26Deifinition%20of%20supplementary%20%5Cangle%20s%0A%5Cend%7Btabular%7D)
</span>