If <em>x</em> + 1 is a factor of <em>p(x)</em> = <em>x</em>³ + <em>k</em> <em>x</em>² + <em>x</em> + 6, then by the remainder theorem, we have
<em>p</em> (-1) = (-1)³ + <em>k</em> (-1)² + (-1) + 6 = 0 → <em>k</em> = -4
So we have
<em>p(x)</em> = <em>x</em>³ - 4<em>x</em>² + <em>x</em> + 6
Dividing <em>p(x)</em> by <em>x</em> + 1 (using whatever method you prefer) gives
<em>p(x)</em> / (<em>x</em> + 1) = <em>x</em>² - 5<em>x</em> + 6
Synthetic division, for instance, might go like this:
-1 | 1 -4 1 6
... | -1 5 -6
----------------------------
... | 1 -5 6 0
Next, we have
<em>x</em>² - 5<em>x</em> + 6 = (<em>x</em> - 3) (<em>x</em> - 2)
so that, in addition to <em>x</em> = -1, the other two zeros of <em>p(x)</em> are <em>x</em> = 3 and <em>x</em> = 2
Answer:
3
Step-by-step explanation:
3/3x + 1/x+4 = 10/7x
3/3x + 1/x+4 = 10/7x , x=0,x=-4
1/x + 1/x+4 = 10/7x
1/x + 1/x+4 - 10/7x = 0
7(x+4)+7x-10(x+4) / 7x*(x+4) = 0
7x+28+7x-10x-40 / 7x*(x+4) = 0
4x-12 / 7x*(x+4) = 0
4x-12=0
4x-=12
x=3,x=0,x=-4
x=3
Answer:
c. 9t+45 that shows distributive property
where it shows a*(b+c)=(a*b)+(b*c).so,9(t+5)=9*t+9*5
Answer:
y=-5x+22
Step-by-step explanation: