We know that:
∠ABC=∠BCA=xº
∠BDC=∠BCD=xº
1) we have to find the angle ∠DBC:
∠BDC+∠BCD+∠DBC=180º
xº+xº+∠DBC=180º
2xº+∠DBC=180º
∠DBC=180º-2xº
2) we have to find the angle ∠ABD:
∠ABD=∠ABC-∠DBC
∠ABD=xº-(180º-2x)
∠ABD=xº-180º+2xº
∠ABD=3xº-180º
Answer: ∠ABD=3xº-180º
F(t) = P.e^(r.t) [ and not as you wrote it f(t)+Pe^rt]
plug in:
f(t) = 8.e^(0.08t) (where e = 2.718 and t=8 given, f(8))
f(8) = 8.(2.718)^(0.08*8) = 21.74^(0.64)
f(8) = 7.17
Let width = w
Let length = l
Let area = A
3w+2l=1200
2l=1200-3w
l=1200-3/2
A=w*l
A=w*(1200-3w)/2
A=600w-(3/2)*w^2
If I set A=0 to find the roots, the maximum will be at wmax=-b/2a which is exactly 1/2 way between the roots-(3/2)*w^2+600w=0
-b=-600
2a=-3
-b/2a=-600/-3
-600/-3=200
w=200
And, since 3w+2l=1200
3*200+2l=1200
2l = 600
l = 300
The dimensions of the largest enclosure willbe when width = 200 ft and length = 300 ft
check answer:
3w+2l=1200
3*200+2*300=1200
600+600=1200
1200=1200
and A=w*l
A=200*300
A=60000 ft2
To see if this is max area change w and l slightly but still make 3w+2l=1200 true, like
w=200.1
l=299.85
A=299.85*200.1
A=59999.985
Answer is in the attachment below.
Answer:
Step-by-step explanation:
VZ = 44-27.5 = 16.5
ZY/VY = ⅝
WX = ⅝ of VX
VX = 36×8/5 = 57.6
VW = VX - WX = 21.6 units