1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lions [1.4K]
3 years ago
8

Stephen purchased a guitar, which was originally priced at $80 but

Mathematics
2 answers:
Sonbull [250]3 years ago
8 0
$24

(ignore this i don’t have enough characters )

spin [16.1K]3 years ago
4 0

Answer:

57 dollars

Step-by-step explanation:

1. Solving the 25% discount

25% = .25

80 x .25 = $20

80 - 20 = $60

** We subtracted 80 from 20 because 25% of 80 is 20 BUT We're taking 25% OFF of 80 because it was a discount.

2. Solving the 5% Tax

5% = .05

$60 x .05 = 3

$60 + 3 = $63

**Adding tax to the discounted price

I hope this helps!

You might be interested in
What's the slope and y-intercept?
Shtirlitz [24]

Answer:

Slope: 2; Y-Intercept: (0,3)

Step-by-step explanation:

As you can see from the graph, it rises 4 and runs 2. So, the slope is 2. It intersects the y axis at (0,3)

4 0
1 year ago
Read 2 more answers
How can you find the volume of a composed figure?
aliina [53]
The first composite shape<span> is a combination of a rectangular prism and a pyramid. To </span>find the volume <span>of the entire </span>shape<span> you </span>find the volume<span> of each individual </span>shape<span> and add them together. The second </span>figure<span> consists of a cylinder and a hemisphere.</span>
5 0
2 years ago
Read 2 more answers
amber deposits $870 in an account that has a simple interest rate of 8% per year. After 5 years, how much interest will Amber ha
charle [14.2K]
For simple interest, the formula is I = PRT, where I = interest, P = principal borrowed or deposited, R = rate as a decimal, and T = time in years.

Your information:
I = (870)(0.08)(5)
I = 348

Add the interest to the principal for your total balance

348 + 870 = $1218 will be the total balance in the account.
4 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Find the product. (10^2)^3 <br> 1,000 <br> 10,000 <br> 100,000 <br> 1,000,000
dangina [55]
The answer is 1000000
10^2=100
100^3=1000000
3 0
3 years ago
Other questions:
  • Bob can type 2 letters in 4 hours while Bill can do it in 6 hours. How many hours would it take them to type six letters togethe
    8·2 answers
  • Cost of a cell phone $249.50 markup 30%
    11·2 answers
  • The demand equation for the Roland portable hair dryer is given as follows where x (measured in units of a hundred) is the quant
    7·1 answer
  • Find the x-coordinates of any relative extrema and inflection point(s) for the function f(x)= 6x^1/3 + 3x^4/3. You must justify
    14·1 answer
  • An equation that states two ratios are equivalent
    13·1 answer
  • Solve for x in the following equation.
    12·1 answer
  • Can someone please help me
    14·1 answer
  • 10. *<br> If f(x) = 2(36) + 1, what is the value of f(2)?
    7·1 answer
  • Solve. 140% of 340 is what number?​
    14·1 answer
  • Which equation could possibly represent the graphed function?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!