A single magnetic field is shown.
The object's final velocity, given the data is 10.5 rad/s
<h3>What is acceleration? </h3>
This is defined as the rate of change of velocity which time. It is expressed as
a = (v – u) / t
Where
- a is the acceleration
- v is the final velocity
- u is the initial velocity
- t is the time
<h3>How to determine the final velocity</h3>
The following data were obtained from the question
- Initial velocity (u) = 1.5 rad/s
- Acceleration (a) = 0.75 rad/s²
- Time (t) = 12 s
- Final velocity (v) = ?
The final velocity can be obtained as follow:
a = (v – u) / t
0.75 = (v – 1.5) / 12
Cross multiply
v – 1.5 = 0.75 × 12
v – 1.5 = 9
Collect like terms
v = 9 + 1.5
v = 10.5 rad/s
Thus, the final velocity of the object is 10.5 rad/s
Learn more about acceleration:
brainly.com/question/491732
#SPJ1
Efficiency = (energy that does the job) / (total energy used)
= (45 J) / (120J)
I think you can handle the division.
<span>Your answer is Ethanol - Sugarcane ethanol is an alcohol-based fuel produced by the fermentation of sugarcane juice and molasses. Because it is a clean, affordable and low-carbon biofuel, sugarcane ethanol has emerged as a leading renewable fuel for the transportation sector.</span>
Answer:
allow the downward movement of the concentration gradient by passive transport
Explanation:
Passive transport is a process of substance transport, which is carried out spontaneously, without energy expenditure and in favor of the concentration gradient, that is, from a medium where the molecules are more concentrated towards a medium where their concentration is lower.
Three types of passive transport are distinguished: osmosis, simple diffusion and facilitated diffusion
<u>Simple diffusion</u>
It is the passage, through the plasma membrane, of small molecules without charge soluble in the lipid bilayer, such as some gases (oxygen and carbon dioxide). For a molecule to diffuse through the membrane it is necessary that there is a difference in concentration between the external and the internal environment.
<u>Diffusion facilitated
</u>
There are molecules such as amino acids, glucose and small ions that, due to their chemical and size characteristics, cannot diffuse through the lipid bilayer and require transport proteins for diffusion.
The transport proteins are immersed in the plasma membrane and can be of two types: protein channels, formed by proteins that generate a channel in the membrane, and permeases, which are proteins that, when joined to the molecule to be transported, change their shape by carrying them into the cell.