Answer:
a
Step-by-step explanation:
1.
area = L x w = 72
L = 2w
72 = 2w*w = 2w^2
divide by 2
36 = w^2
w = sqrt(36) = 6
l = 2*6 =12
perimeter = 2L +2W = 2*12 + 2*6 = 24+12 = 36
2.
sqrt(40)= 6.324555 cm ( round to 6.32 )
6.32 - 4 = 2.32 cm original length of a side
Using it's concept, it is found that the average rate of change of the function during the interval from 0 to 2 seconds is given by:
B. -32 ft/s; the average change in altitude of the ball each second over that interval.
<h3>What is the average rate of change of a function?</h3>
The average rate of change of a function is given by the change in the output divided by the change in the input. Hence, over an interval [a,b], the rate is given as follows:

In this problem, the function is given by:
f(t) = -16t² + 100.
The outputs are given as follows:
- f(0) = -16(0)² + 100 = 100.
- f(0) = -16(2)² + 100 = 36.
Hence the average rate of change is given by:
r = (36 - 100)/(2 - 0) = -32 ft/s.
And the correct option is:
B. -32 ft/s; the average change in altitude of the ball each second over that interval.
More can be learned about the average rate of change of a function at brainly.com/question/24313700
#SPJ1
Answer:
12/19?
11/19?
Step-by-step explanation:
Subtract 1111 from both sides
5{e}^{{4}^{x}}=22-115e4x=22−11
Simplify 22-1122−11 to 1111
5{e}^{{4}^{x}}=115e4x=11
Divide both sides by 55
{e}^{{4}^{x}}=\frac{11}{5}e4x=511
Use Definition of Natural Logarithm: {e}^{y}=xey=x if and only if \ln{x}=ylnx=y
{4}^{x}=\ln{\frac{11}{5}}4x=ln511
: {b}^{a}=xba=x if and only if log_b(x)=alogb(x)=a
x=\log_{4}{\ln{\frac{11}{5}}}x=log4ln511
Use Change of Base Rule: \log_{b}{x}=\frac{\log_{a}{x}}{\log_{a}{b}}logbx=logablogax
x=\frac{\log{\ln{\frac{11}{5}}}}{\log{4}}x=log4logln511
Use Power Rule: \log_{b}{{x}^{c}}=c\log_{b}{x}logbxc=clogbx
\log{4}log4 -> \log{{2}^{2}}log22 -> 2\log{2}2log2
x=\frac{\log{\ln{\frac{11}{5}}}}{2\log{2}}x=2log2
Answer= −0.171