An <em>imaginary number</em>. The defining property of an imaginary number is that has the number i attached to it, where i² = -1.
A few examples of imaginary numbers: 3i, i, -7i, (√3)i, (1/2)i
Answer:
The equation is:
![409 = T - 223](https://tex.z-dn.net/?f=409%20%3D%20T%20-%20223)
And the solution is:
![T = 632](https://tex.z-dn.net/?f=T%20%3D%20632)
Step-by-step explanation:
Given
Represent Kiran with K and Tyler with T
Kiran score is represented as:
![K = 409](https://tex.z-dn.net/?f=K%20%3D%20409)
Also, Kiran scored 223 less than Tyler.
This is represented as:
![K = T - 223](https://tex.z-dn.net/?f=K%20%3D%20T%20-%20223)
Substitute 409 for K
![409 = T - 223](https://tex.z-dn.net/?f=409%20%3D%20T%20-%20223)
Make T the subject
![T = 409 +223](https://tex.z-dn.net/?f=T%20%3D%20409%20%2B223)
![T = 632](https://tex.z-dn.net/?f=T%20%3D%20632)
Answer:
63
Step-by-step explanation:
First we multiply :)
18 x 7 = 126
Now we divide :)
126/2 = 63
Therefore your answer will be 63. :)
Have an amazing day!!
Please rate and mark brainliest!!
Step-by-step explanation:
![\lim_{n \to \infty} \sum\limits_{k=1}^{n}f(x_{k}) \Delta x = \int\limits^a_b {f(x)} \, dx \\where\ \Delta x = \frac{b-a}{n} \ and\ x_{k}=a+\Delta x \times k](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Csum%5Climits_%7Bk%3D1%7D%5E%7Bn%7Df%28x_%7Bk%7D%29%20%5CDelta%20x%20%3D%20%5Cint%5Climits%5Ea_b%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5C%5Cwhere%5C%20%5CDelta%20x%20%3D%20%5Cfrac%7Bb-a%7D%7Bn%7D%20%5C%20and%5C%20x_%7Bk%7D%3Da%2B%5CDelta%20x%20%5Ctimes%20k)
In this case we have:
Δx = 3/n
b − a = 3
a = 1
b = 4
So the integral is:
∫₁⁴ √x dx
To evaluate the integral, we write the radical as an exponent.
∫₁⁴ x^½ dx
= ⅔ x^³/₂ + C |₁⁴
= (⅔ 4^³/₂ + C) − (⅔ 1^³/₂ + C)
= ⅔ (8) + C − ⅔ − C
= 14/3
If ∫₁⁴ f(x) dx = e⁴ − e, then:
∫₁⁴ (2f(x) − 1) dx
= 2 ∫₁⁴ f(x) dx − ∫₁⁴ dx
= 2 (e⁴ − e) − (x + C) |₁⁴
= 2e⁴ − 2e − 3
∫ sec²(x/k) dx
k ∫ 1/k sec²(x/k) dx
k tan(x/k) + C
Evaluating between x=0 and x=π/2:
k tan(π/(2k)) + C − (k tan(0) + C)
k tan(π/(2k))
Setting this equal to k:
k tan(π/(2k)) = k
tan(π/(2k)) = 1
π/(2k) = π/4
1/(2k) = 1/4
2k = 4
k = 2