Use energy conservation to calculate the speed!
Total kinetic energy before collision = total kinetic energy after the collision.
Draw a freebody diagram, it will explain it really well
the boat is floating on top of the water, which means that the net acceleration in the y direction must be zero
the boat is not sinking (dominant downwards acceleration/force)
the boat is not flying (dominant upward acceleration/force)
that measn

now, if you drew the FBD, you only have 2 forces acting on the boat.
the upward bouyancy force on the boat and the downward force due to weight

since the net force is equal to zero

and thus
- momentum
- Yes, if the elephant is standing still.
- Fullback
- impulse acting on it.
- 2.25 N∙s
- A cannon firing.
- Inelastic
- it stays the same
- When the cue ball contacts the other balls, momentum is transferred causing them to gain momentum and speed.
- less than 3 m/s
<h3><u><em>
these are all correct i got an 100%</em></u><em><u> </u></em></h3>
Answer:
Explanation:
Incomplete question but for understanding.
We want to find the electrical force between two charges, then you can use the coulombs law which states that the force of attraction or repulsion between two charges is directly proportional to the product of the two charges and inversely proportional to the square of their distance apart,
So,
F = kq1•q2 / r²
Where k is a constant and it is given as
K = 8.99 × 10^9 Nm²/C²
q1 and q2 are the charges and in this question it is not given, so the question is incomplete. Let assume that,
q1 = - 1.609 × 10^-19 C electron
q2 = 1.609 × 10^-19 C proton
Since unlike charges attract, then it is force of attraction
Also, r is the distance apart and it is not given, let assume the distance between the two charges is 2 × 10^-5m
Then,
F = kq1•q2 / r²
F = 8.99 × 10^9 × 1.609 × 10^-19 × 1.609 × 10^-19 / (2 × 10^-5)²
F = 5.82 × 10^-19 N
Are you familiar with any basic calculus? If so, we can just look at this derivative and see what's happening with our units here..

Here it shows that acceleration is the derivative of velocity with respect to time. In other words, we can say that:

We can read that equation as: "acceleration is the change of velocity divided by the change in time (aka the time interval)."
If you're not familiar with calculus, we can use a simple equation of motion:

where:
vf = final velocity
vi = initial velocity
a = acceleration
t = observed time interval
We can rearrange this equation to find:

This is the same exact thing we wrote before!