Answer:
3x10⁴v
Explanation:
Using
Wavelength= h/ √(2m.Ke)
880nm = 6.6E-34/√ 2.9.1E-31 x me
Ke= 6.6E-34/880nm x 18.2E -31.
5.6E-27/18.2E-31
= 3 x 10⁴ Volts
Acceleration = (change in speed) / (time for the change)
change in speed = (speed at the end) minus (speed at the beginning)
change in speed = (zero) minus (28 m/s) = -28 m/s
Acceleration = (-28 m/s) / (13 sec)
Acceleration = -2.15 m/s²
Answer:
a) 0.138J
b) 3.58m/S
c) (1.52J)(I)
Explanation:
a) to find the increase in the translational kinetic energy you can use the relation

where Wp is the work done by the person and Wg is the work done by the gravitational force
By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

the change in the translational kinetic energy is 0.138J
b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

the new speed is 3.58m/s
c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

hence, the change in Er is about 1.52J times the initial rotational energy
Answer rain gauge measures rain shadow units millimetres
Before Pluto was discovered, it was predicted. Astronomers had observed that massive objects can affect the orbits of its neighbors, and, after seeing deviations in the orbits of Uranus and Neptune, assumed something substantial existed beyond their orbits.
When Pluto was spotted, it was thought to be the predicted object and was identified as a ninth planet.
A few decades later, astronomers started discovering more and more objects around other stars and didn’t know whether to call them planets or not. There appeared to be a need to define what a planet means, and that led to what some people consider Pluto’s demotion to a dwarf planet.
The International Astronomical Union decided that full-sized planets must orbit the sun, have a round shape, and have cleared their orbits of other objects. Pluto fulfills the first two criteria, but not the third.
It still goes around the sun, it’s round enough, it’s got moons, and behaves like a planet, but the idea is that Pluto did not form the same way as the rest of the planets. Pluto’s orbit is both eccentric and inclined more than the rest of the planets by about 17 degrees. That’s suggests something is different about this object.
This debate about whether to call it a planet or not is silly, because it doesn’t matter to Pluto what you call it. It is an interesting object, goes around the sun, and shows geology and an atmosphere.
There’s a tendency to define objects based on what they are now, but nothing is constant in the universe. There are some issues with the nomenclature, and a definition today may not apply to the same object tomorrow.