1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zina [86]
3 years ago
5

if the angle of elevation from the point on the ground to the top of the tree is 34° and the point is 25 feet from the base of t

he tree what is the height of the tree? The answer is 16.9 but I need help with part 2 “if the tree grows an additional 10 feet, what is the new angle of the elevation from the point 25 feet from a he base of the tree to the top of the tree? A) 42.3° B) 47.1° C) 49.8° D) 54.6°

Mathematics
1 answer:
Ivenika [448]3 years ago
3 0

Answer:

It’s c I did it on USA test prep

Step-by-step explanation:

You might be interested in
Which coordinate pair identifies the center of the circle represented by 4x2 + 4y2 − 16x − 24y + 36 = 0.
Flura [38]

Answer

Find out the which coordinate pair identifies the center of the circle represented by 4x² + 4y² − 16x − 24y + 36 = 0.

To prove

The general equation of the circle is

(x - h)² + (y - k)² = r²

Where h,k are the centre and r is the radius.

4x² + 4y² − 16x − 24y + 36 = 0

Divided both side by 4.

x² + y² − 4x − 6y + 9= 0

Add and subtract 4 and 9

x² + y² − 4x − 6y + 4 -4 +9 - 9 +9= 0    

x² + y² − 4x − 6y + 4 -4 + 9 - 9 +9= 0    

x² + 4 - 2× 2 × x + y² + 9 - 2 × 3 × y = 9 + 4 - 9

using the formula ( a + b )² = a² + b² +2ab

(x - 2)² +  (y - 3)² = 2²

Compare this with the general equation of circle.

Thus

h = 2 , k = 3

Option A is correct .

5 0
3 years ago
How do I find it. ..............
Alenkinab [10]

Answer:

∠CBD = 4(4) + 52°

              = 16° + 52°

              <u>= 68°</u>

Step-by-step explanation:

Given that,

∠ABC = 8x - 10°

∠CBD = 4x + 52°

Also,

∠ABD = 90°

∠ABD = ∠ABC + ∠CBD

∠ABD (90°) = (4x + 52°) + (8x - 10°)

∠ABD (90°) = 4x + 52° + 8x - 10°

∠ABD (90°) = (4x + 8x) + (52° - 10°)

∠ABD (90°) = 12x + 42°

90° - 42° = 12x

48° = 12x

\frac{48}{12} = x

4° = x

∠CBD =  4x + 52°

∴ ∠CBD = 4(4°) + 52°

              = 16° + 52°

              = 68°

7 0
4 years ago
What is the volume of the figure below
Over [174]
Please send a picture of the figure
8 0
3 years ago
Bart works 36 hours a week and makes $612. Charles works 34 hours a week and makes $663. Who makes more per hour? How do you kno
oee [108]
First of all , divide 612 by 36
Then the same with Charles
Then subtract your Anwsers then that should do it
4 0
4 years ago
A loan of$8000 was repaid in 24 equal monthly installments of $400 . The rate of interest on the loan was​
Lesechka [4]

Answer:

1%

Step-by-step explanation:

24(400) = 9600 = total amt paid

9600 - 8000 = 1600 = amt of interest paid

I = PRT         T = 2 yr

1600 = 8000(2)R

1600 = 16000R

1600/16000 = 1/10 = .01 = 1%

8 0
3 years ago
Other questions:
  • Rewrite 4•4•6•4•4•6 this is the question I have for math PLEASE help
    13·1 answer
  • Use the coordinates of the labeled point to find a point-slope equation of the
    13·1 answer
  • For one month siera calculated her home towns average height temperature in degrees Fahrenheit. She wants to convert that temper
    9·1 answer
  • In Dr. Mosley's waiting room, 4 magazines are scattered on the chairs. A patient named Tristan decides he probably has time to s
    13·2 answers
  • 4. The cosine function can be made to have the same values as the sine function for each angle by including a shifted _______ in
    13·1 answer
  • There are 26.2 miles in a marathon right the number of miles using a fraction
    15·1 answer
  • Twenty nine minus eight times a number is equal to five. What is the number?
    11·2 answers
  • Find Measure of angle 1<br><br> Options: 60<br> 50<br> 40<br> 30
    7·1 answer
  • Please help my assignment is due at 12:00AM!!
    14·1 answer
  • 100 POINTS AND BRAINLIST
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!