1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zolol [24]
2 years ago
10

Pls answer Math-iready

Mathematics
1 answer:
Ymorist [56]2 years ago
4 0

Answer:

1  - Variable

2 - Corfficient

3 - Term

4 - Constant

Step-by-step explanation:

So, I am pretty srue the way the boxes are now is the correct way already. (I should be wrong?)

You might be interested in
Which set is closed under the operation multiplication?
vlada-n [284]
D is under multiplication
6 0
2 years ago
Find all solutions of the given system of equations and check your answer graphically. HINT [See Examples 1-4.] (If there is no
Likurg_2 [28]

Answer:

Infinitely\ many\ solutions\ exist.\\\\Solutions\ are\ (x,\frac{3}{4}x-1)

Step-by-step explanation:

Given\ equations\ are\\\\3x-4y=4.................eq(1)\\\\9x-12y=12..............eq(2)\\\\divide\ eq(2)\ by\ 3\\\\\frac{1}{3}(9x-12y=12)\\\\\Rightarrow 3x-4y=4\\\\Hence\ equations\ represent\ the\ same\ line.\\Hence\ Infinitely\ many\ solutions\ exist.\\\\3x-4y=4\\\\4y=3x-4\\\\y=\frac{3}{4}x-1\\\\Solutions\ are\ (x,\frac{3}{4}x-1)

3 0
2 years ago
-3 (5 g +1) + 8 g
Komok [63]

Answer:

-7g-3

Step-by-step explanation:

in order to evaluate for this mathematical expression, we need to consider the negative sign carefully and then open the bracket then evaluate.

<u>solutuion</u>

-3 (5 g +1) + 8 g

-15g -3 + 8g

-15g +8g -3

-7g-3

8 0
2 years ago
Find the taylor series centered at the given value of a and find the associated radius of convergence. (1) f(x) = 1 x , a = 1 (2
Kitty [74]

a) The radius of convergence is calculated as

R=1.

b) Due to the fact that it converges in every direction, the radius of convergence is either infinity or zero.

<h3>What is the associated radius of convergence.?</h3>

(a)

Take into consideration the function f with respect to the number a,

f(x)=\frac{1}{x}, \quad a=1

In case you forgot, the Taylor series for the function $f$ at the number a looks like this:

\begin{aligned}f(x) &=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n !}(x-a)^{n} \\&=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{*}(a)}{2 !}(x-a)^{2}+\ldots\end{aligned}

Determine the function f as well as any derivatives of the function $f by setting a=1 and working backward from there.

\begin{aligned}f(x) &=\frac{1}{x} & f(1)=\frac{1}{1}=1 \\\\f^{\prime}(x) &=-\frac{1}{x^{2}} &  f^{\prime}(1)=-\frac{1}{(1)^{2}}=-1 \\\\f^{\prime \prime}(x) &=\frac{2}{x^{3}} &  f^{\prime \prime}(1)=\frac{2}{(1)^{3}}=2 \\\\f^{\prime \prime}(x) &=-\frac{2 \cdot 3}{x^{4}} & f^{\prime \prime}(1)=-\frac{2 \cdot 3}{(1)^{4}}=-2 \cdot 3 \\\\f^{(*)}(x) &=\frac{2 \cdot 3 \cdot 4}{x^{5}} & f^{(n)}(1)=\frac{2 \cdot 3 \cdot 4}{(1)^{5}}=2 \cdot 3 \cdot 4\end{aligned}

At the point when a = 1, the Taylor series for the function f looks like this:

f(x) &=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{\prime \prime}(a)}{2 !}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3 !}(x-a)^{3}+\cdots \\\\&=f(1)+\frac{f^{\prime}(1)}{1 !}(x-1)+\frac{f^{\prime}(1)}{2 !}(x-1)^{2}+\frac{f^{\prime \prime}(1)}{3 !}(x-1)^{3}+\cdots \\

&=1+\frac{-1}{1 !}(x-1)+\frac{2}{2 !}(x-1)^{2}+\frac{-2 \cdot 3}{3 !}(x-1)^{3}+\frac{2 \cdot 3 \cdot 4}{4 !}(x-1)^{4}+\cdots \\\\&=1-(x-1)+(x-1)^{2}-(x-1)^{3}+(x-1)^{4}+\cdots \\\\&=\sum_{1=0}^{\infty}(-1)^{n}(x-1)^{n}

In conclusion,

&=\sum_{1=0}^{\infty}(-1)^{n}(x-1)^{n}

Find the radius of convergence by using the Ratio Test in the following manner:

\begin{aligned}L &=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\&=\lim _{n \rightarrow \infty} \frac{(-1)^{n+1}(x-1)^{n+1}}{(-1)^{n}(x-1)^{n}} \mid \\&=\lim _{n \rightarrow \infty}|x-1| \\&=|x-1|\end{aligned}

The convergence of the series when L<1, that is, |x-1|<1.

The radius of convergence is calculated as

R=1.

For B

Take into consideration the function f with respect to the number a,

a_{n}=(-1)^{n}(x-1)^{n}

f(x)=\left(x^{2}+2 x\right) e^{x},  a=0 The Taylor series for f(x)=e^{x} at a=0 is,

e^{2}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots

f(x) &=\left(x^{2}+2 x\right) e^{x} \\&=\left(x^{2}+2 x\right)\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right)+2 x\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right) \\&=x^{2}\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right)+\left(\frac{x^{4}}{2 !}+\frac{x^{5}}{3 !}+\frac{x^{6}}{4 !}+\ldots\right)+\left(2 x+2 x^{2}+\frac{2 x^{3}}{2 !}+\frac{2 x^{4}}{3 !}+\frac{2 x^{5}}{4 !}+\ldots\right) \\

&=\left(x^{2}+x^{3}+\frac{x^{4}}{2 !}\right) \\&=2 x+3 x^{2}+\left(1+\frac{2}{2 !}\right) x^{3}+\left(\frac{1}{2 !}+\frac{2}{3 !}\right) x^{4}+\left(\frac{1}{4 !}\right) x^{5}+\ldots \\&=2 x+3 x^{2}+2 x^{3}+\frac{5}{6} x^{4}+\frac{1}{4} x^{5}+\ldots

Due to the fact that it converges in every direction, the radius of convergence is either infinity or zero.

Read more about convergence

brainly.com/question/15415793

#SPJ4

The complete question is attached below

3 0
1 year ago
Show work plz
MAXImum [283]
First u need to divide 135 by 0.4 which equals 337.5, So her gross pay is $337.50
4 0
3 years ago
Other questions:
  • Year 9 Maths - linear equations please help
    8·2 answers
  • If 8(2r-3)-r=3(3r+2) what does r equal
    5·2 answers
  • Express the polynomial below by nesting. f(x)=4x³+3x²+2x-4​
    11·1 answer
  • A local art studio offers a new session of drawing classes every 12 days. A competing art studio offers a new session of drawing
    5·1 answer
  • Select all the expressions that are equivalent to -3/4​
    13·1 answer
  • Work out the circumference of this circle.
    7·1 answer
  • Find the distance between the points
    13·2 answers
  • Paul needs to buy 5_8pound of peanuts. The scale at the store measures parts of a pound in sixteenths. What measure is equivalen
    15·1 answer
  • Joianie beleives that you cannot use cross products to solve the proportion 50/3 = 75/x for x. She says
    10·1 answer
  • Ayuda por favor/Help please
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!