The term sensitivity in Analytical Chemistry is "the slope of the calibration curve or a function of analyte concentration or amount".
<u>Answer:</u> Option B
<u>Explanation:</u>
In a sample, the little amounts of substances can be accurately evaluated by a method is termed as "Analytical sensitivity". This detect a target analyte like an antibody or antigen, process is considered as potential of a test to and generally demonstrated as the analyte's minimum detectable concentration.
The acceptable diagnostic sensitivity is not guaranteed by high analytical sensitivity. The percentage of individuals who have a given disarray who are identified by the method as positive for the disarray is known as "Diagnostic sensitivity".
Answer:
The change in temperature that occurs when 8000 J of heat is used by a mass 75 g of water is 25.4 °C
Explanation:
H = mc ΔT
m = 75 g
c = 4. 200 J/ g °C
H = 8000 J
ΔT =?
Rearranging the formula, making ΔT the subject of formula;
ΔT = H / m c
ΔT = 8000 / 75 * 4.200
ΔT = 8000 / 315
ΔT = 25.4 °C
Answer:
So 1 mole
Explanation:
PV = nRT
P = Pressure atm
V = Volume L
n = Moles
R = 0.08206 L·atm·mol−1·K−1.
T = Temperature K
standard temperature = 273K
standard pressure = 1 atm
22.4 liters of oxygen
Ok so we have
V = 22.4
P = 1 atm
PV = nRT
n = PV/RT
n = 22.4/(0.08206 x 273)
n = 22.4/22.40
n = 1 mole
Answer:
1.64 moles O₂
Explanation:
Part A:
Remember 1 mole of particles = 6.02 x 10²³ particles
So, the question becomes, how many '6.02 x 10²³'s are there in 9.88 x 10²³ molecules of O₂?
This implies a division of given number of particles by 6.02 x 10²³ particles/mole.
∴moles O₂ = 9.88 x 10²³ molecules O₂ / 6.02 x 10²³ molecules O₂ · mole⁻¹ = 1.64 mole O₂
_______________
Part B needs an equation (usually a combustion of a hydrocarbon).