Now get the square root of 30
In this problem, it is important to take note that the number of numbers to be utilized isn't specified so it can be up to a thousand numbers. It wasn't also specified if repeating of numbers is allowed or not. So with those taken into consideration and the condition presented in mind, the numbers that can give you 8 when added and 30 when multiplied are 2, 3, 5, -1, and another -1. The derivation from this is mainly from factorization and a little bit of logic.
here is the solution.
2 x 3 x 5 x -1 x -1 = 30
6 x 5 x -1 x -1 = 30
30 x -1 x -1 = 30
-30 x -1 = 30
30 = 30
2 + 3 + 5 + -1 + -1 = 8
5 + 5 + -1 + -1 = 8
10 + -1 + -1 = 8
9 + -1 = 8
8 = 8
Answer:
x= 10
Step-by-step explanation:
If line m is parallel to line n,
(8x +50)°= 130° (corr. ∠s, m//n)
8x +50= 130
Bring constants to one side:
8x= 130 -50
8x= 80
Divide both sides by 8:
x= 80 ÷8
x= 10
Answer:
6
Step-by-step explanation:
Start with the number 16
16
• Round to the nearest ten
since 6 is greater or equal to 5 round 1 to 2
20
• Divide by the number in 2 pairs
Divide by 2
10
• Add -5
10 + -5 = 5
• Increase by 1
5+1 = 6