By definition, Bronsted-Lowry acid is a proton donor in the acid-base neutralization reaction. When a weak acid like acetylsalicylic acid is reacted with water, the water here acts as the Bronsted-Lowry base. This is possible because water has properties of amphoterism - can act as an acid or base. In this case, acetylsalicylic acid would have to donate its H+ atom to water, so that it would yield a hydronium ion, H₃O⁺. The complete net ionic reaction is shown in the picture.
So, in the reaction, the products yield are the acetylsalicylate ion and the hydronium ion.
<span>So when the chemist combines Ethane (CH3CH3) and Chlorine (Cl2) with the intention of producing Chloroethane (CH3CH2Cl), the other product that's formed in this reaction is 1,2-dichloroethane (ClCH2CH2Cl) also called as Ethylene dichloride with molecular weight of 98.954 g/mol. This is a colorless oily flammable substance that weighs heaver when vaporized.</span>
Answer:
Heat transfer in step 2 = 47.75 J
Explanation:
Internal energy = heat + work done
U = Q + W
In a cyclic process the total internal energy change of the system = 0.
In the process there are two steps. The total heat exchange in the process is the sum of heat exchanges in the two processes.
We have to find the heat exchange in step 2.
In step 1,
W = 1.25 J Q = -37 J
= -37 + 1.25 = -35.75 J
In step 2, the internal energy change will be negative of that in step 1.
U = 35.75 J
W = -12 J
U = Q + W
35.75 = Q -12
Q = 47.75 J
Heat transfer in step 2 = 47.75 J
<span>Answer is: the mass of hydrogen is 22,05 grams.
m(</span>Al(C₂H₃O₂)₃)<span> = 500 g.
M</span>(Al(C₂H₃O₂)₃) = 27 + 6 ·12 + 9 · 1 + 6 · 16 · g/mol = 204 g/mol.<span>
n</span>(Al(C₂H₃O₂)₃) = m(Al(C₂H₃O₂)₃) ÷ M(Al(C₂H₃O₂)₃).
n(Al(C₂H₃O₂)₃) = 500 g ÷ 204 g/mol.
n(Al(C₂H₃O₂)₃) = 2,45 mol.
n(Al(C₂H₃O₂)₃) : n(H) = 1 : 9.
n(H) = 22,05 mol.
m(H) = 22,05 mol · 1 g/mol
m(H) = 22,05 g.