The type of covalent bond is formed between amino acid molecules during protein synthesis will be <u>"peptide bond".</u>
<u />
A peptide bond would be a sort of covalent link that connects an amino acid's carboxyl group to its amino group. Amino acids itself were comprised of atoms bonded together through covalent bonds.
Two atoms share an electron pair equally in a covalent link. Peptide (amide) but also disulfide links between amino acids, as well as C-C, C-O, and C-N bonds within amino acids, represent examples of significant covalent bonds.
Therefore, the type of covalent bond is formed between amino acid molecules during protein synthesis will be <u>"</u><u>peptide bond"</u><u>.</u>
<u />
To know more about covalent bond
brainly.com/question/4463646
#SPJ4
<u />
I believe it’s 2? Because it’s saying read the temperature. Which is basically saying look at what state the water is in. Ex: hot or cold
Solution :
From the balanced chemical equation, we can say that 1 moles of KBr will produce 1 moles of KCl .
Moles of KBr in 102 g of potassium bromide.
n = 102/119.002
n = 0.86 mole.
So, number of miles of KCl produced are also 0.86 mole.
Mass of KCl produced :

Hence, this is the required solution.
<h3>
Answer:</h3>
495 g K₃N
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.77 mol K₃N
<u>Step 2: Identify Conversions</u>
Molar Mass of K - 39.10 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of K₃N - 3(39.10) + 14.01 = 131.31 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
495.039 g K₃N ≈ 495 g K₃N
Answer:
half-life, in radioactivity, the interval of time required for one-half of the atomic nuclei of a radioactive sample to decay (change spontaneously into other nuclear species by emitting particles and energy), or, equivalently, the time interval required for the number of disintegrations per second of a radioactive ...
Explanation:
braniest