Remark
The proof is only true if m and n are equal. Make it more general.
m = 2k
n = 2v
m + n = 2k + 2v = 2(k + v).
k and v can be equal but many times they are not. From that simple equation you cannot do anything for sure but divide by 2.
There are 4 combinations
m is divisible by 4 and n is not. The result will not be divisible by 4.
m is not divisible by 4 but n is. The result will not be divisible by 4.
But are divisible by 4 then the sum will be as well. Here's the really odd result
If both are even and not divisible by 4 then their sum is divisible by 4
Answer:

Step-by-step explanation:
Hi there!

To get rid of the fraction
, multiply both sides of the equation by 3 (the denominator):

To get rid of the fraction
, multiply both sides of the equation by 5 (the denominator):

I hope this helps!
Answer:
Step-by-step explanation:
To find the least number of party favors, we have to consider the number of guests.
In this case, there are two possibilities—6 or 8.
For 6: 6, 12, 18, 24 (Add 6 to each number)
For 8: 8, 16, 24 (Add 8 to each number)
Now in both series, the least number (that is in common) is 24. Hence, Madison should make at least 24 party favors.
Answer:
i don't exactly know what the question is but based off what i understand x=140
Step-by-step explanation: