Answer:
There is clear curvature in the residual plot, which suggests that the relationship between mean SAT score and percent taking is not linear.
Step-by-step explanation:
Answer is in the sheet, hope this helps!
Answer:
179.25 cm squared
Step-by-step explanation:
14*10=140
3.14(5)^2=78.5/2=39.25
140+39.25=179.25
<h3><u>given</u><u>:</u></h3>
<u>
</u>
<u>
</u>
<h3><u>to</u><u> </u><u>find</u><u>:</u></h3>
the volume of the given prism.
<h3><u>solution</u><u>:</u></h3>
<u>
</u>
<u>
</u>
<u>
</u>
<u>hence</u><u>,</u><u> </u><u>the</u><u> </u><u>volume</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>prism</u><u> </u><u>is</u><u> </u><u>1</u><u>9</u><u>2</u><u> </u><u>cubic</u><u> </u><u>centimeters</u><u>.</u>
Answer:
The <em>p</em>-value is 0.809.
Step-by-step explanation:
In this case we need to perform a significance test for the standard deviation.
The hypothesis is defined as follows:
<em>H</em>₀: <em>σ</em>₀ = 4 vs. <em>Hₐ</em>: <em>σ</em>₀ ≤ 4
The information provided is:
<em>n</em> = 9
<em>s</em> = 3
Compute the Chi-square test statistic as follows:


The test statistic value is 4.5.
The degrees of freedom is:
df = n - 1
= 9 - 1
= 8
Compute the <em>p</em>-value as follows:

*Use a Chi-square table.
Thus, the <em>p</em>-value is 0.809.