Answer:
2/3rds of liad's run
Step-by-step explanation:
3 min 45s = 3 3/4 min = 15/4 min; 10/(15/4) = 8/3 laps
2min 30s = 2 1/2 min = 5/2 min; 10/(5/2) = 4 laps
(8/3)/4 = 2/3
<span>3x - 2y + 2y > -14 + 2y </span>
<span>3x + 0 > -14 + 2y </span>
<span>3x > -14 + 2y </span>
<span>3x + 14 > -14 + 14 + 2y </span>
<span>3x + 14 > 0 + 2y </span>
<span>3x + 14 > 2y </span>
<span>(3x + 14)/2 > 2y/2 </span>
<span>(3x + 14)/2 > y*(2/2) </span>
<span>(3x + 14)/2 > y*(1) </span>
<span>(3x + 14)/2 > y </span>
<span>y < (3x + 14)/2 </span>
<span>y < 3x/2 + 14/2 </span>
<span>y < 3x/2 + 7 </span>
<span>y < (3/2)*x + 7 </span>
<span>“y” is LESS THAN (3/2)*x + 7 </span>
<span>the slope intercept form of the inequality is: y < (3/2)*x + 7 </span>
<span>STEP 2: Temporarily change the inequality into an equation by replacing the < symbol with an = symbol. </span>
<span>y < (3/2)*x + 7 </span>
<span>y = (3/2)*x + 7 </span>
<span>STEP 3: Prepare the x-y table using the equation from Step 2. </span>
<span>Using the slope intercept form of the equation from Step 2, choose a value for x, and then compute y for at least three points. </span>
<span>Although you could plot the graph with just two sets of x-y coordinates, you should compute at least three different sets of coordinates points to ensure you have not made a mistake. All three x-y coordinates must lie on the same straight line. If they do not, you have made a mistake. </span>
<span>You can choose any value for x. </span>
<span>For example, (arbitrarily) choose x = -2 </span>
<span>If x = -2, </span>
<span>y = (3/2)*x + 7 </span>
<span>y = (3/2)*(-2) + 7 </span>
<span>y = 4 </span>
Answer:
95°
Step-by-step explanation:
The angle on the 20TH street and 22ND street must add up to 180° so the answer is 95°
37.5*0.010=.375 (or press % button on calculator)
80*.375=30
9514 1404 393
Answer:
- x ≤ 4
- x > 10
- x ≤ -7
Step-by-step explanation:
We're guessing you want to solve for x in each case. You do this in basically the same way you would solve an equation.
1. 3x +2 ≤ 14
3x ≤ 12 . . . . . subtract 2
x ≤ 4 . . . . . . . divide by 3
__
2. -5 +2x > 15
2x > 20 . . . . . . add 5
x > 10 . . . . . . . . divide by 2
__
3. -2x +4 ≥ 18
4 ≥ 18 +2x . . . . . add 2x
-14 ≥ 2x . . . . . . . subtract 18
-7 ≥ x . . . . . . . . . divide by 2
_____
<em>Additional comment</em>
The statement above that the same methods for solving apply to both equations and inequalities has an exception. The exception is that some operations reverse the order of numbers, so make the inequality symbol reverse. The usual operations we're concerned with are <em>multiplication and division by a negative number</em>: -2 < -1; 2 > 1, for example. There are other such operations, but they tend to be used more rarely for inequalities.
You will note that we avoided division by -2 in the solution of the third inequality by adding 2x to both sides, effectively giving the variable term a positive coefficient. You will notice that also changes its relation to the inequality symbol, just as if we had left the term where it was and reversed the symbol: -2x ≥ 14 ⇔ -14 ≥ 2x ⇔ x ≤ -7 ⇔ -7 ≥ x