1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha_Volkova [10]
3 years ago
12

Considering only the values of

iddle" class="latex-formula"> for which \sin \beta \tan \beta \sec \beta \cot \beta is defined, which of the following expressions is equivalent to \sin \beta \tan \beta \sec \beta \cot \beta?
a. \sec \beta \cot \beta
b. \tan \beta
c. \cot \beta \tan \beta
d. \tan \beta \csc \beta \sec \beta
Mathematics
2 answers:
morpeh [17]3 years ago
7 0

\large\boxed{Answer:}

We will use trigonometric identities to solve this. I will use θ (theta) for the angle.

First of all, we know that cotθ = 1/tanθ. This is a trigonometric identity.

We can replace cotθ in the expression with 1/tanθ.

sin\theta tan\theta sec\theta \frac{1}{tan\theta}

Simplify: 1/tanθ * tanθ = tanθ/tanθ = 1

So now, we have:

sin\theta sec\theta

Next, we also know that secθ = 1/cosθ. This is another trigonometric identity.

We can replace secθ with 1/cosθ in our expression.

sin\theta \frac{1}{cos\theta}

Simplify:

\frac{sin\theta}{cos\theta}

Our third trigonometric identity that we will use is tanθ = sinθ/cosθ.

We can replace sinθ/cosθ with tanθ.

Now we have as our final answer:

\large\boxed{b.\ tan\theta}

Hope this helps!

andrey2020 [161]3 years ago
3 0

Answer:

\huge \boxed{ \boxed{ \red{b) \tan( \beta ) }}}

Step-by-step explanation:

<h3>to understand this</h3><h3>you need to know about:</h3>
  • trigonometry
  • PEMDAS
<h3>given:</h3>
  • \sin \beta \tan \beta \sec \beta \cot \beta
<h3>tips and formulas:</h3>
  • \tan( \theta)  =  \dfrac{ \sin( \theta) }{ \cos( \theta) }
  • \cot( \theta)  =  \dfrac{ \cos( \theta) }{ \sin( \theta) }
  • \sec( \theta)  =  \dfrac{1}{ \cos( \theta) }

<h3>let's solve:</h3>
  1. \sf rewrite \:  \tan( \beta )  \: as \:  \dfrac{ \sin( \beta ) }{ \cos(  \beta  ) }  :  \\\sin (\beta   )  \cdot\frac{ \sin(  \beta ) }{ \cos( \beta ) } \cdot  \sec (\beta ) \cdot\cot (\beta)
  2. \sf rewrite \:  \sec( \beta )  \: as \:  \dfrac{1 }{ \cos(  \beta  ) }  :  \\\sin (\beta) \cdot\frac{ \sin(  \beta ) }{ \cos( \beta ) } \cdot   \frac{1}{ \cos( \beta ) }  \cdot\cot (\beta)
  3. \sf rewrite \:  \cot( \beta )  \: as \:  \dfrac{ \cos( \beta ) }{ \sin(  \beta  ) }  :  \\\sin (\beta) \cdot\frac{ \sin(  \beta ) }{ \cos( \beta ) } \cdot   \frac{1}{ \cos( \beta ) }  \cdot \: \dfrac{ \cos( \beta ) }{ \sin(  \beta  ) }
  4. \sf \: cancel \: sin :  \\\sin (\beta) \cdot\frac{  \cancel{\sin(  \beta ) }}{ \cos( \beta ) } \cdot   \frac{1}{ \cos( \beta ) }  \cdot \: \dfrac{ \cos( \beta ) }{  \cancel{\sin(  \beta  ) }} \\ \sin (\beta) \cdot\frac{  1 }{ \cos( \beta ) } \cdot   \frac{1}{ \cos( \beta ) }  \cdot \:  \cos( \beta )  \\
  5. \sf cancel \: cos :  \\ \sin (\beta) \cdot\frac{  1}{ \cos( \beta ) } \cdot   \frac{1}{ \cancel{ \cos( \beta )} }  \cdot \: \cancel{  \cos( \beta ) } \\  \\  \sin( \beta )   \: \cdot \:  \dfrac{ 1 }{ \cos( \beta ) }
  6. \sf \: simplify \: multipication :  \\  \dfrac{ \sin( \beta ) }{ \cos( \beta ) }
  7. \sf use \:  \frac{ \sin( \beta ) }{ \cos( \beta ) }  =  \tan( \beta )  \: identity :  \\  \therefore \:  \tan( \beta )

You might be interested in
Divide pop in the ratio 4:2:1
ankoles [38]
I hope this helps you

8 0
3 years ago
the polynomial function i (t)=-0.1t^2+1.6t represents the yearly income (or loss) form a real estate investment where t is time
Natali [406]
Factor out 0.1t (t + 16)
t + 16 = 0
Subtract 16 from both sides
t = -16
After 16 years the income begins to decline
6 0
3 years ago
What does 2π/3 equal and cos2π/3 equal?
777dan777 [17]

Answer:

Step-by-step explanation:

2π/3 radians is equivalent to

  2π       180°

-------- * ---------- = 120°

    3        π rad

This angle (120°) is 30° past 90°.  The 'opposite side' of the triangle formed by this ray of length 1 is √3 and the 'adjacent side' is 1.  

                                                                 adj side          -1

cos 120° is in Quadrant II.  cos 120° = --------------- = ---------

                                                                       hyp             2

                         √3

and sin 120° = --------

                            2

8 0
3 years ago
Please please please help me with this. I can't remember how to work this problem out. If someone could explain to me how to do
RideAnS [48]
If the two triangles are congruent it means that their side lengths are equal, so we can assume that x = 3x - 8 and so 2x = 8 and x = 4. Hope that helps :)
6 0
4 years ago
Extra points I'm just confused and cant find the answer
slavikrds [6]
Its B
the answer is above..................................ok
6 0
3 years ago
Read 2 more answers
Other questions:
  • A student's checking account contained $660 at the beginning of the month. The student had five transactions during the month: d
    7·1 answer
  • An arithmetic sequence is defined by f(n) = 52 + (n − 1)(-7)
    10·1 answer
  • my new total was $60 after the discount and i still had to pay 5% for sales tax, what is the final total
    8·1 answer
  • Suppose that receiving stations X, Y, and Z are located on a coordinated plane at the points (12,6), (-12,-4), and (-6,9), respe
    14·1 answer
  • Describe the first step you would take in solving 5x +3x -7
    11·2 answers
  • Which polynomial below could produce this graph?
    8·1 answer
  • A triangle has side lengths of (9.8f-8.4)(9.8f−8.4) centimeters, (2.2f+4.9)(2.2f+4.9) centimeters, and (9.8g+9.2)(9.8g+9.2) cent
    8·1 answer
  • I need the answer to this
    8·1 answer
  • HELP its urgent.............
    6·2 answers
  • Consider the figure below: (DE and BC are parallel)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!