The mass of carbon contained in 2.25 g of potassium carbonate, K₂CO₃ is 0.196 g.
<h3>
Molecular mass of potassium carbonate</h3>
The molecular mass of potassium carbonate, K₂CO₃ is calculated as follows;
M = K₂CO₃
M = (39 x 2) + (12) + (16 x 3)
M = 138 g
mass of carbon in potassium carbonate, K₂CO₃ is = 12 g
The mass of carbon contained in 2.25 g of potassium carbonate, K₂CO₃ is calculated as follows;
138 g ------------ 12 g of carbon
2.25 g ------------ ?
= (2.25 x 12) / 138
= 0.196 g
Thus, the mass of carbon contained in 2.25 g of potassium carbonate, K₂CO₃ is 0.196 g.
Learn more about potassium carbonate here: brainly.com/question/27514966
#SPJ1
Answer:
<u>When small organic molecules bind together, they form larger molecules called biological macromolecules.</u>Biological macromolecules are important cellular components and perform a wide array of functions necessary for the survival and growth of living organisms. The four major classes of biological macromolecules are carbohydrates, lipids, proteins, and nucleic acids.
(i hope this helps)
Answer:
It s a pure substance.
Explanation:
Can only be separated into its different elements by chemical means because it is connected by a chemical bond.
Answer:
The correct answers are:
• Softer, porous, or more permeable rocks weather faster than harder rocks.
• Rocks in warmer climates weather faster than rocks in colder climates.
• The more water present, the faster the rate of weathering.
Explanation:
Weathering is the process through which the surface minerals of rock are broken down and loosened. This occurs through the action of extreme temperatures, rainwater and biological activity.
Hope this helps- Good luck ^w
<em>Answer:</em>
- The concentration of new solution will be 1×10∧-7 M.
<em>Solution:</em>
<em>Data Given </em>
given mass of fluoxymesterone =16.8mg = 0.0168 g
molar mass of fluoxymesterone = 336g/mol
vol. of fluoxymesterone = 500.0 ml = 0.500 L
Stock Molarity of fluoxymesterone = (0.0168/336)÷0.500 = 1×10∧-4 M
So applying dilution formula
Stock Solution : New Solution
M1.V1 = M2.V2
( 1×10∧-4 M) × (1×10∧-6 L) = M2 × 0.001 L
[( 1×10∧-4) × (1×10∧-6)]÷[0.001] = M2
1 × 10∧-7 = M2
<em>Result:</em>
- The concentration of new solution M2 will be 1 × 10∧-7