Answer:
i have no idea. But i will answer because i'm still learning.
Step-by-step explanation:
-2 (3a – 2) = 1/3(7 – 3a)
is whats the question
ok its i'm guessing -2 (3a – 2) = 1/3(7 – 3a)
-2.15384615385
Hope this helps ;)
The answer is going to 25.13
To find the z-score for a weight of 196 oz., use

A table for the cumulative distribution function for the normal distribution (see picture) gives the area 0.9772 BELOW the z-score z = 2. Carl is wondering about the percentage of boxes with weights ABOVE z = 2. The total area under the normal curve is 1, so subtract .9772 from 1.0000.
1.0000 - .9772 = 0.0228, so about 2.3% of the boxes will weigh more than 196 oz.
It can be written as √64·√x¹⁶ = 8x⁸, so answer B.
<h3>Given</h3>
1) Trapezoid BEAR with bases 11.5 and 6.5 and height 8.5, all in cm.
2) Regular pentagon PENTA with side lengths 9 m
<h3>Find</h3>
The area of each figure, rounded to the nearest integer
<h3>Solution</h3>
1) The area of a trapezoid is given by
... A = (1/2)(b1 +b2)h
... A = (1/2)(11.5 +6.5)·(8.5) = 76.5 ≈ 77
The area of BEAR is about 77 cm².
2) The conventional formula for the area of a regular polygon makes use of its perimeter and the length of the apothem. For an n-sided polygon with side length s, the perimeter is p = n·s. The length of the apothem is found using trigonometry to be a = (s/2)/tan(180°/n). Then the area is ...
... A = (1/2)ap
... A = (1/2)(s/(2tan(180°/n)))(ns)
... A = (n/4)s²/tan(180°/n)
We have a polygon with s=9 and n=5, so its area is
... A = (5/4)·9²/tan(36°) ≈ 139.36
The area of PENTA is about 139 m².