Answer:
i would say that the rocket was in the air for 8 seconds and the highest it went in the air was 48
Step-by-step explanation:
Answer:
Lin has 11 acorns ⇒ answer D
He subtract 4 from 7 instead of add 4 to 7
Step-by-step explanation:
- Lin has 4 pinecones and some acorns
- She has 7 fewer pinecones than acorns
- The meaning of 7 fewer pinecones than acorns is the number of the
pinecones is less than the number of acorns by 7
∵ She has 4 pinecones
∵ She has 7 fewer pinecones than acorns
- The number of pine cones is less than the number of acorns by 7
∴ 4 = number of acorns - 7
- Add 7 to both sides
∴ 11 = number of acorns
*<em> Lin has 11 acorns</em>
- Tom choose answer A which is 3
- He made a mistake in the equation
- He put ⇒ number of the acorns = 7 - 4 not 7 + 4
∴ number of acorns = 3
* <em>He subtract 4 from 7 instead of add 4 to 7</em>
Answer:
f(x) = -5/9 x + 5 1/9
Step-by-step explanation:
f(2)=4 and f(−7)=9 means the line pass through (2,4) and (- 7,9)
f(x) = mx + b
m = (y-y') / (x-x') = (9 - 4) / (- 7 - 2) = - 5/9
for (2,4) : b = f(x) - mx = y - mx = 4 - (- 5/9) x 2 = 4 + 10/9 = 46/9 = 5 1/9
f(x) = -5/9 x + 5 1/9
check for (-7, 9) f(-7) = (-5/9) * (-7) + 5 1/9 = 35/9 + 46/9 = 81/9 = 9
Answer:



Step-by-step explanation:
<u>Optimizing With Derivatives
</u>
The procedure to optimize a function (find its maximum or minimum) consists in
:
- Produce a function which depends on only one variable
- Compute the first derivative and set it equal to 0
- Find the values for the variable, called critical points
- Compute the second derivative
- Evaluate the second derivative in the critical points. If it results positive, the critical point is a minimum, if it's negative, the critical point is a maximum
We know a cylinder has a volume of 4
. The volume of a cylinder is given by

Equating it to 4

Let's solve for h

A cylinder with an open-top has only one circle as the shape of the lid and has a lateral area computed as a rectangle of height h and base equal to the length of a circle. Thus, the total area of the material to make the cylinder is

Replacing the formula of h

Simplifying

We have the function of the area in terms of one variable. Now we compute the first derivative and equal it to zero

Rearranging

Solving for r

![\displaystyle r=\sqrt[3]{\frac{4}{\pi }}\approx 1.084\ feet](https://tex.z-dn.net/?f=%5Cdisplaystyle%20r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%7D%7B%5Cpi%20%7D%7D%5Capprox%201.084%5C%20feet)
Computing h

We can see the height and the radius are of the same size. We check if the critical point is a maximum or a minimum by computing the second derivative

We can see it will be always positive regardless of the value of r (assumed positive too), so the critical point is a minimum.
The minimum area is


Step-by-step explanation:
Area of circle:
A=π*(r^2)=π*(16^2)=256π ft^2
Area of the figure:
A=(3*256π)/4=192π=603.185=603.18 ft^2