Answer:
A water molecule is consists of two hydrogen atom, each bound to the central oxygen atom through a covalent chemical bond.
Water molecules can form new molecules by moving away from their H-O-H configuration due to thermal motions and rotations. <u>Thermal motions and rotations break the individual hydrogen bonds and change the H-O-H configuration influenced by the temperature and pressure.</u>
<u />
First, find the number of moles of UF6
Avagadro's number = 6.023 x 10^23
Number of moles = 8.0 x 10^26 / Avagadro's number = 8.0 x 10^26 / 6.023 x 10^23 = 1.328 x 10³ moles
Molecular weight of UF6 = Molecular weight of U (238.02891) + Molecular weight of F6 (6 x 18.9984032) = 238.02891 + 113.9904192 = 352.0193292 g/mol
Therefore mass of 8.0 x 10^26 UF6 molecules = 352.0193292 g/mol x 1.328 x 10³ moles = 467.481669 x 10³ grams
Answer:
We'll have 82 moles ZnO and 41 moles S
Explanation:
Step 1: data given
Number of moles Zinc (Zn) = 82 moles
Number of moles sulfur oxide (SO2) = 42 moles
Step 2: The balanced equation
2Zn + SO2 → 2ZnO + S
Step 3: Calculate the limiting reactant
For 2 moles Zinc we need 1 mol sulfur oxide to produce 2 moles zinc oxide and 1 mol sulfur
Zinc is the limiting reactant. It will completely be consume (82 moles). Sulfur oxide is in excess. There will react 82/2 = 41 moles
There will remain 42-41 = 1 mol SO2
Step 4: Calculate moles of products
For 2 moles Zinc we need 1 mol sulfur oxide to produce 2 moles zinc oxide and 1 mol sulfur
For 82 moles Zinc we'll have 82 moles of Zinc Oxide (ZnO)
For 82 moles Zinc we'll have 82/2 = 41 moles of sulfur
We'll have 82 moles ZnO and 41 moles S
Explanation:
<em>When the electron changes levels, it decreases energy and the atom emits photons. The photon is emitted with the electron moving from a higher energy level to a lower energy level. The energy of the photon is the exact energy that is lost by the electron moving to its lower energy level.</em>